
CSCI 136
Data Structures &

Advanced Programming

SkewHeaps



Video Outline

• Skew Heaps
• Why
• What
• How



Merging Heaps

• Goal: We want to build a very large heap.
• Suppose we have a huge data set.
• We’d like partition the data, build smaller heaps in 

parallel, and then merge them together

• How long to merge two VectorHeaps?

• How complicated is it?

• Is a VectorHeap the right tool for the job?



Revisiting Heap Design

• Think back to the trade-offs between vectors 
and lists
• Inserting into a vector requires shifting, but 

inserting into a linked structure can be done by 
updating references

• Observation: Heaps don’t need to be array-
based complete binary trees. An arbitrary 
binary tree can satisfy the heap invariants too



BinaryTree-based Heaps

• Downsides to using BinaryTree objects to 
store our heaps?
• We waste a small amount of space per node

• Each BinaryTree node holds three extra references

• We don’t guarantee balance
• This may be a trade-off we are OK with as long as 

things don’t get too bad…

• Upsides?
• Updating references is fast (no copying/shifting 

arrays): this may open doors to new functionality



Mergeable Heaps

• Consider the destructive operation: 
merge(heap1, heap2)

• Implementing heap operations become relatively 
straightforward with merge as a building block!

• Get: return the value stored in the root
• Add: merge with the single-element heap
• Remove: detach the root from its subtrees, then 

merge the old left and right subtrees



Mergeable Heaps

Implementing merge(heap1, heap2)

• Basic idea: the heap with highest priority root 
somehow “absorbs” the heap with lower-
priority root as a subtree

• Challenges:
• “Absorbs” how? Where?
• How much reheapifying is needed

• How deep do trees get after many merges?



Skew Heap: Merge Pseudocode
SkewHeap merge(SkewHeap L, SkewHeap R)

if either L or R is empty:
return the other

if L.minValue < R.minValue:
swap L and R (now L has minValue)

if L has no left subtree:
set R as L’s left subtree

else:
swap L’s left and right subtrees
let temp ← L’s left subtree
set L’s left child ← merge(temp, R)

Case 1

Case 2

Case 3
(recurse)



Skew Heap: Merge Examples

13.4 A Heap Implementation 331

Left

1 3

3

(a)

(b)

(c)

3

1

1 1

1

10

3

10

(d)

+

+

+

+

+

1

1

3

3
1

Left Right Result

Left Right Result

Left Right Result

ResultRight

Figure 13.6 Different cases of the method for s. In (a) one of the
heaps is empty. In (b) and (c) the right heap becomes the left child of the left heap. In
(d) the right heap is merged into what was the right subheap.

Bailey
page 331merge

Case 2

Case 3
(recurse)



Skew Heap Performance

• Code & low-level details are in the textbook, 
but at a high level…
• The merge algorithm makes no guarantees for any 

individual operation, but it keeps the tree shallow 
over time—the amortized behavior is good

• Theorem: Any set of m SkewHeap operations can 
be performed in O(m log n) time, where n is 
the total number of items in the SkewHeaps



Heap Summary

• Heaps are a partially ordered tree based on 
item priority
• Invariants: parent has higher priority than each child

• Heaps provide:
• and efficient PriorityQueue implementation

• an efficient building block for sorting (heapsort)

• We can efficiently manage heaps in an implicit 
array representation

• But we can add flexibility and functionality if we 
carefully manage heaps using binary trees


