
CSCI 136
Data Structures &

Advanced Programming

Queues

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

•Many “real-world” examples, including:

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

•Many “real-world” examples, including:
•Lines at movie theater, grocery store, etc.

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

•Many “real-world” examples, including:
•Lines at movie theater, grocery store, etc.
•OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

•Many “real-world” examples, including:
•Lines at movie theater, grocery store, etc.
•OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

•Printers

tail head

Queues

•A Queue is a collection of elements, but access
is restricted to the “head” and “tail”

•Many “real-world” examples, including:
•Lines at movie theater, grocery store, etc.
•OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

•Printers
•Routing network traffic

The Structure5 Universe (+ Linear!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Stacks are LIFO (Last In First Out)
•Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

•Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

Stacks vs. Queues

•Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

•Like Stacks, Queues have their own terminology,
which can be mapped to Linear interface methods:

Stacks vs. Queues

•Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

•Like Stacks, Queues have their own terminology,
which can be mapped to Linear interface methods:

• enqueue: insert value at back of queue

Stacks vs. Queues

•Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

•Like Stacks, Queues have their own terminology,
which can be mapped to Linear interface methods:

• enqueue: insert value at back of queue
• dequeue: remove value from front of queue,

Stacks vs. Queues

•Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

•Like Stacks, Queues have their own terminology,
which can be mapped to Linear interface methods:

• enqueue: insert value at back of queue
• dequeue: remove value from front of queue,
• (peek: access value at front of queue)

Stacks vs. Queues

•Also like Stacks, Queues can be
implemented:

Stacks vs. Queues

•Also like Stacks, Queues can be
implemented:
•By using existing structures (e.g., Vector,
LinkedList), or

Stacks vs. Queues

•Also like Stacks, Queues can be
implemented:
•By using existing structures (e.g., Vector,
LinkedList), or

•As “stripped down” versions of those
structures

• We can implement a stacks/queues using the same
underlying organization as those structures, but with
reduced/simplified/optimized implementations

The Structure5 Universe (+ Stacks!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

StackArray StackList StackVector

The Structure5 Universe (+ Queues!)

Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

QueueArray QueueList QueueVector

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E peek();
public int size();
}

Also some others like add(),
remove(), getFirst()

Implementing Queues
As with Stacks, we have three options:
QueueArray

QueueVector

QueueList

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

QueueVector

QueueList

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}

QueueVector

QueueList

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {
protected Vector<E> data;
}

QueueList

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {
protected Vector<E> data;
}

QueueList
class QueueList<E> implements Queue<E> {

protected List<E> data; //uses a CircularList
}

Tradeoffs:

• QueueArray:

• QueueVector:

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;

• QueueVector:

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;

• QueueVector:

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast
• dequeue is O(n): uses vec.removeFirst

• QueueList:

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast
• dequeue is O(n): uses vec.removeFirst

• QueueList:
• enqueue is O(1): uses lst.addLast

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast
• dequeue is O(n): uses vec.removeFirst

• QueueList:
• enqueue is O(1): uses lst.addLast
• dequeue is O(1): uses lst.removeFirst

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast
• dequeue is O(n): uses vec.removeFirst

• QueueList:
• enqueue is O(1): uses lst.addLast
• dequeue is O(1): uses lst.removeFirst

• Note: uses a Circularly Linked List so we have fast head and tail
operations, but we only store one reference per node (next)

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

head points to front of
queue; tail points to next
empty space (where next

item will be added)

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

en
qu

eu
e(

C
)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

en
qu

eu
e(

C
)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

en
qu

eu
e(

C
)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

QueueArray

• Perhaps the most interesting implementation, so letʼs look at an
example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)

head points to front of
queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

After wrap around,
head > tail in some

cases!

public class QueueArray<E> {

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count < data.length, ”The queue is full.”);
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count < data.length, ”The queue is full.”);
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
assert (count < data.length) : ”The queue is full.";
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}
}

QueueArray-style QueueVector?

•Why not use this same design with a Vector as our
building block? Several decisions to make:

QueueArray-style QueueVector?

•Why not use this same design with a Vector as our
building block? Several decisions to make:

• How do we interpret the respective meanings of
vec.elementCount, q.head, and q.count?

• How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1?

QueueArray-style QueueVector?

•Why not use this same design with a Vector as our
building block? Several decisions to make:

• How do we interpret the respective meanings of
vec.elementCount, q.head, and q.count?

• How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1?

•These are all things that we can overcome, but we can’t
simply use a Vector as a “black box”

QueueArray-style QueueVector?

•Why not use this same design with a Vector as our
building block? Several decisions to make:

• How do we interpret the respective meanings of
vec.elementCount, q.head, and q.count?

• How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1?

•These are all things that we can overcome, but we can’t
simply use a Vector as a “black box”

• Note: structure5 takes the “black box” approach; intentionally
demonstrates tradeoff of specialization

Takeaways

• Queues, like stacks, limit our access to specific
locations of our data structure

• However, this mimics common access patterns
• We can design a data structure that takes advantage

of these limitations to optimize perf
• By utilizing these data structures, we can

simplify/influence our algorithm design
• Enqueue/dequeue and push/pop are common terms,

so be comfortable using them

