CSCI 136
Data Structures &
Advanced Programming

Queues

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

*Many “real-world” examples, including:

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

*Many “real-world” examples, including:
*Lines at movie theater, grocery store, etc.

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

*Many “real-world” examples, including:
*Lines at movie theater, grocery store, etc.

* OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

*Many “real-world” examples, including:
*Lines at movie theater, grocery store, etc.

* OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

* Printers

Queues

tail head |

* A Queue is a collection of elements, but access
is restricted to the “head’” and “‘tail”

*Many “real-world” examples, including:
*Lines at movie theater, grocery store, etc.

* OS event queue (keeps keystrokes, mouse clicks,
etc., in order)

*Printers
* Routing network traffic

The Structure5 Universe (+ Linear!)

(Terace) (OO (o

SinglyLinkedList DoublyLinkedList

Vector

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

- - - - - - — — — ——

s e s e e e e s s e e e e s e e e e T

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

(bottom)

- - - - - - — — — ——

s e s e e e e s s e e e e s e e e e T

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

remove

- - - - - - — — — ——

s e s e e e e s s e e e e s e e e e T

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

remove

- - - - - - — — — ——

s e s e e e e s s e e e e s e e e e T

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

remove

- - - - - - — — — ——

—_— | —
add i | remove

s e s e e e e s s e e e e s e e e e T

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add) [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add) [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

i
I remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

i
I I remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

i ; S B
| | add | ~ remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

i ; S B
| | add | ~ remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ [remove

- - - - - - — — — ——

i ; S B
| | add | ~ remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add \ / remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Stacks are LIFO (ast n irst ut)
*Queues are FIFO (irst n irst ut)

add) [remove

- - - - - - — — — ——

remove

(bottom) (tail) (EEL)

Stacks vs. Queues

*Both and linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

Stacks vs. Queues

*Both and linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

*Like , have their own terminology,
which can be mapped to Linear interface methods:

Stacks vs. Queues

*Both and linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

*Like , have their own terminology,
which can be mapped to Linear interface methods:
* enqueue: insert value at back of queue

Stacks vs. Queues

*Both and linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

*Like , have their own terminology,

which can be mapped to Linear interface methods:
* enqueue: insert value at back of queue

* dequeue: remove value from front of queue,

Stacks vs. Queues

*Both and linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

*Like , have their own terminology,
which can be mapped to Linear interface methods:
* enqueue: insert value at back of queue
* dequeue: remove value from front of queue,
* (peek: access value at front of queue)

Stacks vs. Queues

*Also like , can be
implemented:

Stacks vs. Queues

*Also like : can be

implemented:

*By using existing structures (e.g., Vector,
LinkedList), or

Stacks vs. Queues

*Also like : can be

implemented:

*By using existing structures (e.g., Vector,
LinkedList), or

*As “stripped down” versions of those

structures

* We can implement a stacks/queues using the same
underlying organization as those structures, but with
reduced/simplified/optimized implementations

The Structure5 Universe (+ Stacks!)

(Terace) (OO (o

e

Vector SinglyLinkedList DoublyLinkedList

StackArray StackList StackVector

The Structure5 Universe (+ Queues!)

Vector

Class

——

5 S

SinglyLinkedList

DoublyLinkedList

QueueArray

Queuelist

QueueVector

Also some others like add (),
Queue Interface remove (), getFirst ()

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);

public E dequeue();

public E peek();

public int size();

}

Implementing Queues

As with Stacks, we have three options:
QueueArray

QueueVector

Queuelist

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

QueueVector

Queuelist

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}
QueueVector

Queuelist

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}
QueueVector

class QueueVector<kE> implements Queue<E> {
protected Vector<E> data;

}
Queuelist

Implementing Queues

As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}
QueueVector

class QueueVector<kE> implements Queue<E> {
protected Vector<E> data;

}
Queuelist

class QueueList<E> implements Queue<E> {
protected List<E> data; //uses a CircularList

Tradeoffs:

* QueueArray:

* QueueVector:

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;

* QueueVector:

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;

* QueueVector:

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size

* QueueVector:

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size
* QueueVector:
* enqueue is O(l):uses vec.addLast

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size
* QueueVector:
* enqueue is O(l):uses vec.addLast
* dequeue is O(n): uses vec.removeFirst

* Queuelist:

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size
* QueueVector:
* enqueue is O(l):uses vec.addLast
* dequeue is O(n): uses vec.removeFirst
* Queuelist:
* enqueue is O(l):uses 1st.addLast

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size

* QueueVector:

* enqueue is O(l):uses vec.addLast
* dequeue is O(n): uses vec.removeFirst

* Queuelist:

* enqueue is O(l):uses 1st.addLast
* dequeue is O(l):uses 1st.removeFirst

Tradeoffs:

* QueueArray:
* enqueue is O(l): (rough idea) data[tail] = item;
* dequeue is O(l): (rough idea) data[head] = null; head++;
* Faster operations, but limited size

* QueueVector:

* enqueue is O(l):uses vec.addLast
* dequeue is O(n): uses vec.removeFirst

* Queuelist:

* enqueue is O(l):uses 1st.addLast

* dequeue is O(l):uses 1st.removeFirst

* Note: uses a Circularly Linked List so we have fast head and tail
operations, but we only store one reference per node (next)

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

| |

head tail

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A B
hlad tjil

head points to front of
queue; tail points to next
empty space (where next
item will be added)

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A | B =
g
hlad tjil :

head points to front of
queue; tail points to next
empty space (where next
item will be added)

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A B ? A B C
hlad tjil ;% held lail

head points to front of
queue; tail points to next
empty space (where next
item will be added)

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A B == | A B C
=
)
0]
, - :
head tail ¢ head tail
head points to front of head and tail “wrap
queue; tail points to next around” array;
empty space (where next when queue is full,

item will be added) head == tail

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A |B = | A B | C =
O o
O >
= o
head tail ¢ head tail ©
head points to front of head and tail “wrap
queue; tail points to next around” array;
empty space (where next when queue is full,

item will be added) head == tail

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A |B = | A B | C = B
O o
O >
= o
head tail ¢ head tail © tail head
head points to front of head and tail “wrap
queue; tail points to next around” array;
empty space (where next when queue is full,

item will be added) head == tail

QueueArray

* Perhaps the most interesting implementation, so let’s look at an
example...

* How to implement!?
* enqueue (item),dequeue(),size()

A | B == | A | B C |=> B C
O o
O >
= o
head tail ¢ head tail © tail head
head points to front of head and tail “wrap After wrap around,
queue; tail points to next around” array; head > tail in some
empty space (where next when queue is full, cases!

item will be added) head == tail

public class QueueArray<E> {

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public class QueueArray<E> {

protected Object[] data; // Must use object because...

protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; //

... can’'t say “new E[size]”

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;

protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’'t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count < data.length, ”"The queue is full.”);
int tail = (head + count) % data.length;
data[tail] = item;
count++;

public class QueueArray<E> {

protected Object[] data; // Must use object because...

protected int head;
protected int count;

public QueueArray(int size) {

data = new Object[size]; // ... can’'t say “new E[size]”

}

public void enqueue(E item) {
Assert.pre(count < data.length, ”"The queue is full.”);
int tail = (head + count) % data.length;
data[tail] = item;

count++;
}
public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)datal[head];

data[head] = null;

head = (head + 1) % data.length;
count--;

return value;

public class QueueArray<E> {

protected Object[] data; // Must use object because...

protected int head;
protected int count;

public QueueArray(int size) {

data = new Object[size]; // ... can’'t say “new E[size]”

}
public void enqueue(E item) {
assert (count < data.length) : ”"The queue is
int tail = (head + count) % data.length;
data[tail] = item;
count++;
}
public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)data[head];

data[head] = null;

head = (head + 1) % data.length;
count--;

return value;

public boolean empty() {
return count>0;

full.";

QueueArray-style QueueVector!?

* Why not use this same design with a Vector as our
building block? Several decisions to make:

QueueArray-style QueueVector!?

* Why not use this same design with a Vector as our
building block? Several decisions to make:

* How do we interpret the respective meanings of
vec.elementCount, g.head,and g.count!?

* How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1!

QueueArray-style QueueVector!?

* Why not use this same design with a Vector as our
building block? Several decisions to make:

* How do we interpret the respective meanings of
vec.elementCount, g.head,and g.count!?

* How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1!

* These are all things that we can overcome, but we can’t
simply use a Vector as a “black box”

QueueArray-style QueueVector!?

* Why not use this same design with a Vector as our
building block? Several decisions to make:

* How do we interpret the respective meanings of
vec.elementCount, g.head,and g.count!?

* How do we “grow” our Vector when our start/end are not at
index 0 and vec.size()-1!

* These are all things that we can overcome, but we can’t
simply use a Vector as a “black box”

* Note: structure5 takes the “black box™ approach; intentionally
demonstrates tradeoff of specialization

Takeaways

* Queues, like stacks, limit our access to specific
locations of our data structure
* However, this mimics common access patterns

* We can design a data structure that takes advantage
of these limitations to optimize perf

* By utilizing these data structures, we can
simplify/influence our algorithm design

* Enqueue/dequeue and push/pop are common termes,
so be comfortable using them

