
CSCI 136
Data Structures &

Advanced Programming

Graph Applications:
Minimum Cost Spanning Trees

Video Outline

•Spanning subgraphs
•Spanning trees
•Prim’s algorithm to calculate spanning trees with
the minimum cost
•Description
•Proof
•Pseudocode
•Implementation in structure5

Motivation

• Let’s say we have a neighborhood of houses
•Want to create an electrical grid
• Goal: each house needs to be connected to a
single network
• (In other words, there is a path along the
electrical wires between any two houses)

• Also works for creating ethernet networks, etc.

Motivation

Motivation

Goal

• Graph problem!
• Select edges to connect all vertices using a single
tree
• Can only select edges in the original graph
•Want to select the minimum cost:
• Minimum total of edge weights in the tree

Spanning Trees

•A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Collection of vertices and
edges from the original

graph

Spanning Trees

•A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

•A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:
• If it’s is not a tree, then it contains some cycle C
• If we remove an edge from C, the resulting collection of edges still

connects all vertices in the tree
• Repeat this process of removing edges until no more cycles remain
• Now we are left with a tree

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:
• If it’s is not a tree, then it contains some cycle C
• If we remove an edge from C, the resulting collection of edges still

connects all vertices in the tree
• Repeat this process of removing edges until no more cycles remain
• Now we are left with a tree

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:
• If it’s is not a tree, then it contains some cycle C
• If we remove an edge from C, the resulting collection of edges still

connects all vertices in the tree
• Repeat this process of removing edges until no more cycles remain
• Now we are left with a tree

Minimum-Cost Spanning Trees

•Suppose we’re given a graph that is:
•connected, and
•has weighted edges (integer, float, double, etc.)

•A minimum cost spanning tree is a spanning tree
where the sum of all the edge weights is the
smallest possible

Minimum-Cost Spanning Trees

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Minimum-Cost Spanning Trees

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

How can we find an MCST?

• Let’s start with some node in our tree
•We need to hook it up to the network…how?
• Let’s use the cheapest edge
• Now we have a two-node network. Need to
expand this network again…how?
• Take the cheapest edge connecting either of the
two nodes currently in the network to an outside
node
• Repeat until n nodes in the tree!

Prim’s Algorithm for MCSTs

•Let’s walk through an example to solidify the algorithm. In
this example, not all edge weights are unique.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Start by picking some vertex

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Start by picking some vertex

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•We’ll note our current tree in green, and other vertices in
orange. Select an edge with the cheapest cost that
connects a green vertex to an orange vertex.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•We’ll note our current tree in green, and other vertices in
orange. Select an edge with the cheapest cost that
connects a green vertex to an orange vertex.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm for MCSTs

•Once all vertices are green, we have constructed a
minimum cost spanning tree.

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Prim’s Algorithm

• The greedy algorithm we just described is called
Prim’s algorithm
•It always find a minimum-cost spanning tree for any
connected graph (even if the weights are negative)!

• How can we argue that Prim’s algorithm is
optimal?
•Why is it always a good idea to connect the
current network to the cheapest node outside of
the network?

The Key to Prim’s Algorithm: “Cut Property”

Def: Sets V1 and V2 form a partition of a set V if
V1 ∪ V2 = V and V1 ∩ V2 = ∅

•In other words, V1 and V2 together
contain all of the vertices in V, but no
vertex is in both V1 and V2.

Lemma: Let G=(V,E) be a connected graph and let
V1 and V2 be a partition of V. Every MCST of G
contains a cheapest edge between V1 and V2

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V1 and V2 be a partition of V. Every MCST of G
contains a cheapest edge between V1 and V2

•Let e be a cheapest edge between V1 and V2
•Let T be a MCST of G.
•If e ∉ T, then T ∪ {e} contains a cycle C and e is an edge
of C
•Some other edge e’ of C must also be between V1 and
V2; since e is a cheapest edge, so w(e’) = w(e)
• (If it weren’t, we could replace e with e’ and T’s cost would be

cheaper, but that’s impossible because T was a MCST.)

If there’s one cheapest edge,
it’s in the MCST. If there’s a tie,

one of them is in the MCST

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V1 and V2 be a partition of V. Every MCST of G
contains a cheapest edge between V1 and V2

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V1 and V2 be a partition of V. Every MCST of G
contains a cheapest edge between V1 and V2

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V1 and V2 be a partition of V. Every MCST of G
contains a cheapest edge between V1 and V2

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6

Using The Cut Property to Prove Prim

We’ll assume all edge costs are distinct
(Not necessary but otherwise proof is slightly less elegant)
Let T be a tree produced by the greedy algorithm,
and suppose T* is a MCST for G.
Claim: T = T*
Idea of Proof: Show that every edge added to the
tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the cut property!

Using The Cut Property to Prove Prim

Now use induction!
•Suppose that, for some k ≥ 1, the first k edges
added to T are in T*. These form a tree Tk

•Let V1 be the vertices of Tk and let V2 = V-V1
•Now, the greedy algorithm will add to T the
cheapest edge e between V1 and V2
•But any MCST contains the (only!) cheapest edge
between V1 and V2, so e is in T*
•Thus the first k+1 edges of T are in T*

Where we are

• Prim’s works!
• Sometimes greedy choices don’t work well, but we
proved that they are always optimal in this case.

• How can we implement Prim’s?

• First: write pseudocode
• What methods do we need our data structures to
support? Which ones must be fast?

• Then: decide on specifics

Prim’s Algorithm

let v be a vertex of G;
set V1 ß {v}, and V2 ß V - {v}
let A ß ∅ // A will contain ALL edges between V1 and V2

while (|V1| < |V|) :
add to A all edges incident to v
// note: A now may have edges with both ends in V1

repeat :
remove cheapest edge e from A

until e is an edge between V1 and V2

add e to MCST

let v ß the vertex of e that is in V2
move v from V2 to V1

Implementing Prim’s Algorithm

•We’ll “build” the MCST by marking its edges as
“visited”
•We’ll “build” V1 by marking its vertices visited
• Question: How should we represent A?
•What operations are important to A?
•Add all edges that are incident to some vertex
•Remove a cheapest edge

•We’ll use a priority queue!
•When we remove an edge from A, we must
verify it has one end in each of V1 and V2

ComparableEdge Class

• Values in a PriorityQueue need to
implement Comparable
•We wrap edges of the PQ in a class called
ComparableEdge
•It requires the label used by graph edges to be of a
Comparable type (e.g., Integer)

MCST: The Code
PriorityQueue<ComparableEdge<String,Integer>> q =

new VectorHeap<ComparableEdge<String,Integer>>();

String v; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree?

g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext())

return; // graph is empty!
v = vi.next();

MCST: The Code

do {
// Add vertex to MCST and add all outgoing edges
// to the priority queue

g.visit(v); // all V1 are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge
e = g.getEdge(v, neighbor);
// add the edge to the priority queue
q.add(new ComparableEdge<String,Integer>(e));

}

...

MCST: The Code
...

searching = true; // looking for an edge btwn V1&V2
while (searching && !q.isEmpty()) {

// grab next shortest edge
e = q.remove();
// Is e between V1 and V2?
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(),

e.there()));
}

}
} while (!searching);

Prim : Space Complexity

•Graph: O(|V| + |E|)
•Each vertex and edge uses a constant amount of space
•Priority Queue O(|E|)
•Each edge takes up constant amount of space
•Every other object (including the neighbor iterator)
uses a constant amount of space
•Result: O(|V| + |E|)
•Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are O(1) time
For each iteration of do ... while loop
•Add neighbors to queue: O(deg(v) log |E|)
•Iterator operations are O(1) [Why?]
•Adding an edge to the queue is O(log |E|)
•Find next edge: O(# edges checked * log |E|)
•Removing an edge from queue is O(log |E|) time
•All other operations are O(1) time

Prim : Time Complexity

Over all iterations of do ... while loop

Step I: Add neighbors to queue:
•For each vertex, it’s O(deg(v) log |E|) time
•Adding over all vertices gives

Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: O(# edges checked * log |E|)
•Each edge is checked at most once
•Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log |E|)

Summary

•Prim’s algorithm finds a MCST for a single
connected component of any graph G=(V,E)

•It is a greedy algorithm, but
•it finds a globally optimal solution!

•Careful analysis of the required operations helps
us choose the best data structures to maximize
performance.

