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Video Qutline

*Spanning subgraphs
*Spanning trees

*Prim’s algorithm to calculate spanning trees with
the minimum cost

*Description

*Proof

*Pseudocode

*Implementation in structure5



Motivation

* Let’s say we have a neighborhood of houses

* Want to create an electrical grid
* Goal: each house needs to be connected to a
single network

* (In other words, there is a path along the
electrical wires between any two houses)

* Also works for creating ethernet networks, etc.
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Goal

* Graph problem!

* Select edges to connect all vertices using a single
tree

* Can only select edges in the original graph

e Want to select the minimum cost:
* Minimum total of edge weights in the tree



Collection of vertices and
edges from the original

Spanning Trees graph

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges




Spanning Trees

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges




Spanning Trees

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges




Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:

 |fit’sis not a tree, then it contains some cycle C

* |f we remove an edge from C, the resulting collection of edges still
connects all vertices in the tree

* Repeat this process of removing edges until no more cycles remain
* Now we are left with a tree
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Minimum-Cost Spanning Trees

*Suppose we’re given a graph that is:
econnected, and
*has weighted edges (integer, float, double, etc.)

*A minimum cost spanning tree is a spanning tree
where the sum of all the edge weights is the
smallest possible



Minimum-Cost Spanning Trees
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How can we find an MCST?

* Let’s start with some node in our tree
* We need to hook it up to the network...how?
* Let’s use the cheapest edge

* Now we have a two-node network. Need to
expand this network again...how?

* Take the cheapest edge connecting either of the
two nodes currently in the network to an outside

node
* Repeat until n nodes in the tree!



Prim’s Algorithm for MCSTs

*Let’s walk through an example to solidify the algorithm. In
this example, not all edge weights are unique.




Prim’s Algorithm for MCSTs

Start by picking some vertex
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Prim’s Algorithm for MCSTs

*We’ll note our current tree in green, and other vertices in
orange. Select an edge with the cheapest cost that
connects a green vertex to an orange vertex.
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Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.
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Prim’s Algorithm for MCSTs

*What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!
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Prim’s Algorithm for MCSTs

*Once all vertices are green, we have constructed a
minimum cost spanning tree.




Prim’s Algorithm

* The greedy algorithm we just described is called

*It always find a minimum-cost spanning tree for any
connected graph (even if the weights are negative)!

 How can we argue that Prim’s algorithm is
optimal?

* Why is it always a good idea to connect the
current network to the cheapest node outside of
the network?



The Key to Prim’s Algorithm: “Cut Property”

Def: Sets V; and V, form a partition of a set V if
V,UV,=VandV, NV, =0
*In other words, V, and V, together

contain all of the vertices in V, but no
vertex is in both V, and V..

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V; and V,



Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V, and V,

*Let e be a cheapest edge between V, and V,

eLet T be a MCST of G.
*lf e € T, then T U {e} contains a cycle C and e is an edge
of C
*Some other edge e’ of C must also be between V; and
V,; since e is a cheapest edge, so w(e’) = w(e)
e (If it weren’t, we could replace e with e’ and T’s cost would be
cheaper, but that’s impossible because T was a MCST.)
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Using The Cut Property to Prove Prim

We'll assume all edge costs are distinct
(Not necessary but otherwise proof is slightly less elegant)

Let T be a tree produced by the greedy algorithm,
and suppose T* is a MCST for G.

Claim: T=T*
|dea of Proof: Show that every edge added to the
tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*
Why? Use the cut property!



Using The Cut Property to Prove Prim

Now use induction!

*Suppose that, for some k > 1, the first k edges
added to T are in T*. These form a tree T,

*Let V, be the vertices of T, and let V, = V-V,

*Now, the greedy algorithm will add to T the
cheapest edge e between V; and V,

*But any MCST contains the (only!) cheapest edge
betweenV;andV,,soeisin T*

*Thus the first k+1 edges of T are in T*



Where we are

* Prim’s works!

* Sometimes greedy choices don’t work well, but we
proved that they are always optimal in this case.

* How can we implement Prim’s?

* First: write pseudocode

e What methods do we need our data structures to
support? Which ones must be fast?

* Then: decide on specifics



Prim’s Algorithm

let v be a vertex of G;
set V; € {v}, and vV, € V - {v}
let A € @ // A will contain ALL edges between V; and V,
while (|v,| < [V]) :
add to A all edges incident to v

// note: A now may have edges with both ends in V;

repeat :
remove cheapest edge e from A
until e is an edge between V; and V,

add e to MCST

let v € the vertex of e that is in V,
move v from V, to V;



Implementing Prim’s Algorithm

 We'll “build” the MCST by marking its edges as
“visited”
* We'll “build” V; by marking its vertices visited

* Question: How should we represent A?

*What operations are important to A?
* Add all edges that are incident to some vertex

* Remove a cheapest edge
*We'll use a priority queue!
* When we remove an edge from A, we must
verify it has one end in each of V, and V,



ComparableEdge Class

* Valuesina PriorityQueue need to
implement Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

*It requires the label used by graph edges to be of a
Comparable type (e.g., Integer)



MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new VectorHeap<ComparableEdge<String,Integer>>();

String v; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree?
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext())
return; // graph is empty!
v = vi.next();



MCST: The Code

do {
// Add vertex to MCST and add all outgoing edges

// to the priority queue
g.visit(v); // all V; are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge
e = g.getEdge(v, neighbor);
// add the edge to the priority queue
g.add(new ComparableEdge<String,Integer>(e));



MCST: The Code

searching = true;

// looking for an edge btwn V,&V,

while (searching && !g.isEmpty()) {

// grab next shortest edge

e = g.remove();

// Is e between V; and V,?

v = e.there();

if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching =

false;

g.visitEdge(g.getEdge(e.here(),

}

} while (!searching);

e.there()));



Prim : Space Complexity

*Graph: O(|V| + |E])

*Each vertex and edge uses a constant amount of space
*Priority Queue O(|E|)

*Each edge takes up constant amount of space

*Every other object (including the neighbor iterator)
uses a constant amount of space

*Result: O(|V| + |E])
*Optimal in Big-O sense!



Prim : Time Complexity

Assume Map ops are O(1) time
For each iteration of do ... while loop

*Add neighbors to queue: O( deg(v) log |E|)
*|terator operations are O(1) [Why?]
*Adding an edge to the queue is O(log |E|)

*Find next edge: O(# edges checked * log |E|)

*Removing an edge from queue is O(log |E|) time
*All other operations are O(1) time



Prim : Time Complexity

Over all iterations of do ... while loop

Step |: Add neighbors to queue:
*For each vertex, it’s O( deg(v) log |E|) time
*Adding over all vertices gives

Y _ deg)loglEl=loglEIY _ deg(v)=log|EI*2IE]



Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: O(# edges checked * log |E|)
*Each edge is checked at most once
*Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log | E|)



Summary

*Prim’s algorithm finds a MCST for a single
connected component of any graph G=(V,E)

*|t is a greedy algorithm, but
*it finds a globally optimal solution!

*Careful analysis of the required operations helps
us choose the best data structures to maximize
performance.



