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Graph Applications:
Minimum Cost Spanning Trees



Video Outline

•Spanning subgraphs
•Spanning trees
•Prim’s algorithm to calculate spanning trees with 
the minimum cost
•Description
•Proof
•Pseudocode
•Implementation in structure5



Motivation

• Let’s say we have a neighborhood of houses
•Want to create an electrical grid
• Goal: each house needs to be connected to a 
single network
• (In other words, there is a path along the 
electrical wires between any two houses)

• Also works for creating ethernet networks, etc.
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Goal

• Graph problem!
• Select edges to connect all vertices using a single 
tree
• Can only select edges in the original graph
•Want to select the minimum cost:
• Minimum total of edge weights in the tree



Spanning Trees

•A spanning tree is a subgraph that covers all the 
vertices using the minimum number of edges

Collection of vertices and 
edges from the original 

graph
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Why Trees?

Theorem:  The minimum collection of edges that 
connects all vertices is a tree

Proof idea:
• If it’s is not a tree, then it contains some cycle C
• If we remove an edge from C, the resulting collection of edges still 

connects all vertices in the tree
• Repeat this process of removing edges until no more cycles remain
• Now we are left with a tree
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Minimum-Cost Spanning Trees

•Suppose we’re given a graph that is:
•connected, and
•has weighted edges (integer, float, double, etc.)

•A minimum cost spanning tree is a spanning tree 
where the sum of all the edge weights is the 
smallest possible



Minimum-Cost Spanning Trees
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How can we find an MCST?

• Let’s start with some node in our tree
•We need to hook it up to the network…how?
• Let’s use the cheapest edge
• Now we have a two-node network.  Need to 
expand this network again…how?
• Take the cheapest edge connecting either of the 
two nodes currently in the network to an outside 
node
• Repeat until n nodes in the tree!



Prim’s Algorithm for MCSTs

•Let’s walk through an example to solidify the algorithm. In 
this example, not all edge weights are unique.
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Prim’s Algorithm for MCSTs

•Start by picking some vertex
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Prim’s Algorithm for MCSTs

•We’ll note our current tree in green, and other vertices in 
orange. Select an edge with the cheapest cost that 
connects a green vertex to an orange vertex.
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Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest 
cost connecting a green vertex to an orange vertex until all 
vertices are green.
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Prim’s Algorithm for MCSTs

•Continue this process of adding an edge with the cheapest 
cost connecting a green vertex to an orange vertex until all 
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Prim’s Algorithm for MCSTs

•What if we have multiple cheapest edges? Ties can be 
broken arbitrarily. There may be multiple valid minimum 
cost spanning trees!
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•What if we have multiple cheapest edges? Ties can be 
broken arbitrarily. There may be multiple valid minimum 
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Prim’s Algorithm for MCSTs

•What if we have multiple cheapest edges? Ties can be 
broken arbitrarily. There may be multiple valid minimum 
cost spanning trees!
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Prim’s Algorithm for MCSTs

•Once all vertices are green, we have constructed a 
minimum cost spanning tree.
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Prim’s Algorithm

• The greedy algorithm we just described is called 
Prim’s algorithm
•It always find a minimum-cost spanning tree for any 
connected graph (even if the weights are negative)!

• How can we argue that Prim’s algorithm is 
optimal?
•Why is it always a good idea to connect the 
current network to the cheapest node outside of 
the network?



The Key to Prim’s Algorithm: “Cut Property”

Def: Sets V1 and V2 form a partition of a set V if 
V1 ∪ V2 = V and V1 ∩ V2 = ∅

•In other words, V1 and V2 together 
contain all of the vertices in V, but no 
vertex is in both V1 and V2.

Lemma: Let G=(V,E) be a connected graph and let 
V1 and V2 be a partition of V. Every MCST of G 
contains a cheapest edge between V1 and V2



Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let 
V1 and V2 be a partition of V. Every MCST of G 
contains a cheapest edge between V1 and V2

•Let e be a cheapest edge between V1 and V2
•Let T be a MCST of G.  
•If e ∉ T, then T ∪ {e} contains a cycle C and e is an edge 
of C
•Some other edge e’ of C must also be between V1 and 
V2; since e is a cheapest edge, so w(e’) = w(e)
• (If it weren’t, we could replace e with e’ and T’s cost would be 

cheaper, but that’s impossible because T was a MCST.)

If there’s one cheapest edge, 
it’s in the MCST.  If there’s a tie, 

one of them is in the MCST



Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let 
V1 and V2 be a partition of V. Every MCST of G 
contains a cheapest edge between V1 and V2

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6



Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let 
V1 and V2 be a partition of V. Every MCST of G 
contains a cheapest edge between V1 and V2

11

10 9

7

8

10 6

5

12

7

11

14

8
8

8

6
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Using The Cut Property to Prove Prim

We’ll assume all edge costs are distinct
(Not necessary but otherwise proof is slightly less elegant)
Let T be a tree produced by the greedy algorithm, 
and suppose T* is a MCST for G.
Claim: T = T*
Idea of Proof: Show that every edge added to the 
tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*

Why? Use the cut property!



Using The Cut Property to Prove Prim

Now use induction!
•Suppose that, for some k ≥ 1, the first k edges 
added to T are in T*. These form a tree Tk

•Let V1 be the vertices of Tk and let V2 = V-V1
•Now, the greedy algorithm will add to T the 
cheapest edge e between V1 and V2
•But any MCST contains the (only!) cheapest edge 
between V1 and V2, so e is in T*
•Thus the first k+1 edges of T are in T*



Where we are

• Prim’s works!
• Sometimes greedy choices don’t work well, but we 
proved that they are always optimal in this case.

• How can we implement Prim’s?

• First: write pseudocode
• What methods do we need our data structures to 
support?  Which ones must be fast?

• Then: decide on specifics



Prim’s Algorithm

let v be a vertex of G;
set V1 ß {v}, and V2 ß V - {v}
let A ß ∅ // A will contain ALL edges between V1 and V2

while (|V1| < |V|) :
add to A all edges incident to v
// note: A now may have edges with both ends in V1

repeat :
remove cheapest edge e from A

until e is an edge between V1 and V2

add e to MCST

let v ß the vertex of e that is in V2
move v from V2 to V1



Implementing Prim’s Algorithm

•We’ll “build” the MCST by marking its edges as 
“visited”
•We’ll “build” V1 by marking its vertices visited
• Question: How should we represent A?
•What operations are important to A?
•Add all edges that are incident to some vertex
•Remove a cheapest edge

•We’ll use a priority queue!
•When we remove an edge from A, we must 
verify it has one end in each of V1 and V2



ComparableEdge Class

• Values in a PriorityQueue need to 
implement Comparable
•We wrap edges of the PQ in a class called 
ComparableEdge
•It requires the label used by graph edges to be of a 
Comparable type (e.g., Integer)



MCST: The Code
PriorityQueue<ComparableEdge<String,Integer>> q =

new VectorHeap<ComparableEdge<String,Integer>>();

String v;        // current vertex                                  
Edge<String,Integer> e; // current edge                                    
boolean searching;      // still building tree?

g.reset();              // clear visited flags                             

// select a node from the graph, if any                                    
Iterator<String> vi = g.iterator();
if (!vi.hasNext())

return; // graph is empty!
v = vi.next();



MCST: The Code

do {
// Add vertex to MCST and add all outgoing edges
// to the priority queue

g.visit(v); // all V1 are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge                                      
e = g.getEdge(v, neighbor);
// add the edge to the priority queue                                       
q.add(new ComparableEdge<String,Integer>(e));

}

...



MCST: The Code
...

searching = true; // looking for an edge btwn V1&V2
while (searching && !q.isEmpty()) {

// grab next shortest edge 
e = q.remove();
// Is e between V1 and V2?
v = e.there();
if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching = false;
g.visitEdge(g.getEdge(e.here(), 

e.there()));
}

}
} while (!searching);



Prim : Space Complexity

•Graph: O(|V| + |E|)
•Each vertex and edge uses a constant amount of space
•Priority Queue O(|E|)
•Each edge takes up constant amount of space
•Every other object (including the neighbor iterator) 
uses a constant amount of space
•Result: O(|V| + |E|)
•Optimal in Big-O sense!



Prim : Time Complexity

Assume Map ops are O(1) time 
For each iteration of do ... while loop
•Add neighbors to queue: O( deg(v) log |E|)
•Iterator operations are O(1) [Why?]
•Adding an edge to the queue is O(log |E|)
•Find next edge: O(# edges checked * log |E|)
•Removing an edge from queue is O(log |E|) time
•All other operations are O(1) time



Prim : Time Complexity

Over all iterations of do ... while loop

Step I: Add neighbors to queue:
•For each vertex, it’s O( deg(v) log |E|) time
•Adding over all vertices gives



Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: O(# edges checked * log |E|)
•Each edge is checked at most once
•Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s 
Algorithm is O(|E| log |E|)



Summary

•Prim’s algorithm finds a MCST for a single 
connected component of any graph G=(V,E)

•It is a greedy algorithm, but
•it finds a globally optimal solution!

•Careful analysis of the required operations helps 
us choose the best data structures to maximize 
performance.


