CSCl 136
Data Structures &
Advanced Programming

Graph Applications:
Minimum Cost Spanning Trees

Video Qutline

*Spanning subgraphs
*Spanning trees

*Prim’s algorithm to calculate spanning trees with
the minimum cost

*Description

*Proof

*Pseudocode

*Implementation in structure5

Motivation

* Let’s say we have a neighborhood of houses

* Want to create an electrical grid
* Goal: each house needs to be connected to a
single network

* (In other words, there is a path along the
electrical wires between any two houses)

* Also works for creating ethernet networks, etc.

Motivation

Motivation

|

Goal

* Graph problem!

* Select edges to connect all vertices using a single
tree

* Can only select edges in the original graph

e Want to select the minimum cost:
* Minimum total of edge weights in the tree

Collection of vertices and
edges from the original

Spanning Trees graph

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Spanning Trees

*A spanning tree is a subgraph that covers all the
vertices using the minimum number of edges

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:

 |fit’sis not a tree, then it contains some cycle C

* |f we remove an edge from C, the resulting collection of edges still
connects all vertices in the tree

* Repeat this process of removing edges until no more cycles remain
* Now we are left with a tree

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:

 |fit’sis not a tree, then it contains some cycle C

* |f we remove an edge from C, the resulting collection of edges still
connects all vertices in the tree

* Repeat this process of removing edges until no more cycles remain
* Now we are left with a tree

Why Trees?

Theorem: The minimum collection of edges that
connects all vertices is a tree

Proof idea:

 |fit’sis not a tree, then it contains some cycle C

* |f we remove an edge from C, the resulting collection of edges still
connects all vertices in the tree

* Repeat this process of removing edges until no more cycles remain
* Now we are left with a tree

Minimum-Cost Spanning Trees

*Suppose we’re given a graph that is:
econnected, and
*has weighted edges (integer, float, double, etc.)

*A minimum cost spanning tree is a spanning tree
where the sum of all the edge weights is the
smallest possible

Minimum-Cost Spanning Trees

Minimum-Cost Spanning Trees

How can we find an MCST?

* Let’s start with some node in our tree
* We need to hook it up to the network...how?
* Let’s use the cheapest edge

* Now we have a two-node network. Need to
expand this network again...how?

* Take the cheapest edge connecting either of the
two nodes currently in the network to an outside

node
* Repeat until n nodes in the tree!

Prim’s Algorithm for MCSTs

*Let’s walk through an example to solidify the algorithm. In
this example, not all edge weights are unique.

Prim’s Algorithm for MCSTs

Start by picking some vertex

Prim’s Algorithm for MCSTs

Start by picking some vertex

Prim’s Algorithm for MCSTs

*We’ll note our current tree in green, and other vertices in
orange. Select an edge with the cheapest cost that
connects a green vertex to an orange vertex.

Prim’s Algorithm for MCSTs

*We’ll note our current tree in green, and other vertices in
orange. Select an edge with the cheapest cost that
connects a green vertex to an orange vertex.

Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

Prim’s Algorithm for MCSTs

*Continue this process of adding an edge with the cheapest
cost connecting a green vertex to an orange vertex until all
vertices are green.

Prim’s Algorithm for MCSTs

*What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

Prim’s Algorithm for MCSTs

*What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

Prim’s Algorithm for MCSTs

*What if we have multiple cheapest edges? Ties can be
broken arbitrarily. There may be multiple valid minimum
cost spanning trees!

Prim’s Algorithm for MCSTs

*Once all vertices are green, we have constructed a
minimum cost spanning tree.

Prim’s Algorithm

* The greedy algorithm we just described is called

*It always find a minimum-cost spanning tree for any
connected graph (even if the weights are negative)!

 How can we argue that Prim’s algorithm is
optimal?

* Why is it always a good idea to connect the
current network to the cheapest node outside of
the network?

The Key to Prim’s Algorithm: “Cut Property”

Def: Sets V; and V, form a partition of a set V if
V,UV,=VandV, NV, =0
*In other words, V, and V, together

contain all of the vertices in V, but no
vertex is in both V, and V..

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V; and V,

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V, and V,

*Let e be a cheapest edge between V, and V,

eLet T be a MCST of G.
*lf e € T, then T U {e} contains a cycle C and e is an edge
of C
*Some other edge e’ of C must also be between V; and
V,; since e is a cheapest edge, so w(e’) = w(e)
e (If it weren’t, we could replace e with e’ and T’s cost would be
cheaper, but that’s impossible because T was a MCST.)

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V; and V,

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V; and V,

Proof Sketch: Cut Property

Lemma: Let G=(V,E) be a connected graph and let
V, and V, be a partition of V. Every MCST of G
contains a cheapest edge between V; and V,

Using The Cut Property to Prove Prim

We'll assume all edge costs are distinct
(Not necessary but otherwise proof is slightly less elegant)

Let T be a tree produced by the greedy algorithm,
and suppose T* is a MCST for G.

Claim: T=T*
|dea of Proof: Show that every edge added to the
tree T by the greedy algorithm is in T*
Clearly the first edge added to T is in T*
Why? Use the cut property!

Using The Cut Property to Prove Prim

Now use induction!

*Suppose that, for some k > 1, the first k edges
added to T are in T*. These form a tree T,

*Let V, be the vertices of T, and let V, = V-V,

*Now, the greedy algorithm will add to T the
cheapest edge e between V; and V,

*But any MCST contains the (only!) cheapest edge
betweenV;andV,,soeisin T*

Thus the first k+1 edges of T are in T

Where we are

* Prim’s works!

* Sometimes greedy choices don’t work well, but we
proved that they are always optimal in this case.

* How can we implement Prim’s?

* First: write pseudocode

e What methods do we need our data structures to
support? Which ones must be fast?

* Then: decide on specifics

Prim’s Algorithm

let v be a vertex of G;
set V; € {v}, and vV, € V - {v}
let A € @ // A will contain ALL edges between V; and V,
while (|v,| < [V]) :
add to A all edges incident to v

// note: A now may have edges with both ends in V;

repeat :
remove cheapest edge e from A
until e is an edge between V; and V,

add e to MCST

let v € the vertex of e that is in V,
move v from V, to V;

Implementing Prim’s Algorithm

 We'll “build” the MCST by marking its edges as
“visited”
* We'll “build” V; by marking its vertices visited

* Question: How should we represent A?

*What operations are important to A?
* Add all edges that are incident to some vertex

* Remove a cheapest edge
*We'll use a priority queue!
* When we remove an edge from A, we must
verify it has one end in each of V, and V,

ComparableEdge Class

* Valuesina PriorityQueue need to
implement Comparable

* We wrap edges of the PQ in a class called
ComparableEdge

*It requires the label used by graph edges to be of a
Comparable type (e.g., Integer)

MCST: The Code

PriorityQueue<ComparableEdge<String,Integer>> q =
new VectorHeap<ComparableEdge<String,Integer>>();

String v; // current vertex
Edge<String,Integer> e; // current edge
boolean searching; // still building tree?
g.reset(); // clear visited flags

// select a node from the graph, if any
Iterator<String> vi = g.iterator();
if (!vi.hasNext())
return; // graph is empty!
v = vi.next();

MCST: The Code

do {
// Add vertex to MCST and add all outgoing edges

// to the priority queue
g.visit(v); // all V; are visited

for (String neighbor : g.neighbors(v)) {
// turn it into outgoing edge
e = g.getEdge(v, neighbor);
// add the edge to the priority queue
g.add(new ComparableEdge<String,Integer>(e));

MCST: The Code

searching = true;

// looking for an edge btwn V,&V,

while (searching && !g.isEmpty()) {

// grab next shortest edge

e = g.remove();

// Is e between V; and V,?

v = e.there();

if (g.isVisited(v)) v = e.here();
if (!g.isVisited(v)) {

searching =

false;

g.visitEdge(g.getEdge(e.here(),

}

} while (!searching);

e.there()));

Prim : Space Complexity

*Graph: O(|V| + |E])

*Each vertex and edge uses a constant amount of space
*Priority Queue O(|E|)

*Each edge takes up constant amount of space

*Every other object (including the neighbor iterator)
uses a constant amount of space

*Result: O(|V| + |E])
*Optimal in Big-O sense!

Prim : Time Complexity

Assume Map ops are O(1) time
For each iteration of do ... while loop

*Add neighbors to queue: O(deg(v) log |E|)
*|terator operations are O(1) [Why?]
*Adding an edge to the queue is O(log |E|)

*Find next edge: O(# edges checked * log |E|)

*Removing an edge from queue is O(log |E|) time
*All other operations are O(1) time

Prim : Time Complexity

Over all iterations of do ... while loop

Step |: Add neighbors to queue:
*For each vertex, it’s O(deg(v) log |E|) time
*Adding over all vertices gives

Y _ deg)loglEl=loglEIY _ deg(v)=log|EI*2IE]

Prim : Time Complexity

Over all iterations of do ... while loop

Step 2: Find next edge: O(# edges checked * log |E|)
*Each edge is checked at most once
*Adding over all edges gives O(|E| log |E|) again

Thus, overall time complexity (worst case) of Prim’s
Algorithm is O(|E| log | E|)

Summary

*Prim’s algorithm finds a MCST for a single
connected component of any graph G=(V,E)

*|t is a greedy algorithm, but
*it finds a globally optimal solution!

*Careful analysis of the required operations helps
us choose the best data structures to maximize
performance.

