CSCI 136
Data Structures &
Advanced Programming

Memory, Objects, and Primitive
Types

This Video

e Clear up some important points about Java:
* Where are objects stored!?
* What distinguishes objects and primitive types!?

* When do values change!?
* How to move data around in Java

e Some stuff we’ve talked about

* Some stuff you've probably seen while
coding

e Some new stuff

Basics of Variables

e Variables store information

e Behind the scenes: all of the local variables

in each method are stored next to each
other in memory

int x;

int vy; |._____.|.--———-|-—————-I

int z;

What is stored?

* For primitive types: exactly what you'd
expect

* int stores a binary number equal to the
Integer

* char stores the Unicode value for the
string in binary

int x=10;

IOOOOOOOOOOOOOOOOOOOOOOOOOOOOlOlOI

X

How to store objects

* When you use new, Java finds some unused

memory (anywhere---not necessarily near
any local variables) to store the object

e Needs to have room for all instance
variables, etc.

N S E—

age grade ID

new Student ()

What happens when you store an object

* You really just store the “address” of where
the actual object is

int x;
Student sl;
Student s2;

What happens when you store an object

* You really just store the “address” of where
the actual object is

%
age grade ID
int x;
Student sl1;
Student s2;

X sl S2

What happens when you store an object

* You really just store the “address” of where
the actual object is

grade
grade

int x;

Student sl;
Student s2;

sl new Student (
S2 new Student (

Some implications

%
age grade ID
int x;
Student sl;
Student s2;
sl = new Student () ;

s?2 = sl;

Some implications

%
age grade ID
int x;
Student sl;
Student s2;
sl = new Student () ;

s?2 = sl;

Some implications

* Any changes made to s2
will affect s1 and vice versa

 The former s2 will be
(eventually) deleted

age grade ID

int x;

Student sl;

Student s2;

sl = new Student();

s?2 = sl;

Copy

* Sometimes: want to actually make a new
copy of an object

* Need to make a new one (using new and
calling a constructor)

* Some classes have a “copy constructor,”

which take an object of the same type as
argument and copy it over

Copy: primitive types

* Primitive types always just copy over the
value

int x = 10;
int y = 20;
y = Xy

V++;

After all this, y
stores 11 and x
stores 10

Function arguments

e All arguments to functions are passed by
value

* This means that any changes to variables are
not reflected in the original function

Arguments with objects

Objects are passed the same way

But, it’s the location that must remain
unchanged

You can change the contents of objects in a
function

But you cannot change which object it is

Let’s see an example

Cleaning up old data

* When are objects deleted!?

e Can’t use scope

* Could be “pointed to” from another method

* Answer: Garbage collector

* Every once in awhile, Java looks at everything
you’re storing in memory. If you're not
pointing to an object anymore, it’s deleted

Clean ¢
leaning up old data f:lm

I

I N EE—
age grade ID I I N
age grade ID
int x;
Student sl;
Student s2;
sl = new Student();

s?2 = sl;

Cleaning up old data r \’.ﬁ
s

grade
int x;
Student sl;
Student s2;
sl = new Student();
s2 = new Student ()
s2 = sl;

sl = null;

Cleaning up old data

* Garbage collection runs automatically
* You don’t need to think about it!

* If you aren’t using it, it will be deleted

* |f you are using it, Java won’t delete it

* Only comes up with space usage

* Your program will only clear out space if you
stop keeping track of it

Autoboxing

* Sometimes we really want primitive types to
be treated as objects

e Otherwise we can’t have a Vector of ints,
or an Association of ints (annoying!)

* Java has a tool to help us out with this

Autoboxing

* Java converts int to Integer, char to
Character, etc., automatically

* Your vector really does store objects of type
Integer. But it’'s ok to do something like:

Vector<Integer> vec = new Vector<Integer>;
vec.add (10) ;

Unboxing

e Can do the opposite too!

Vector<Integer> vec = new Vector<Integer>;
vec.add (new Integer (10));

int x = vec.get (0);

SCOPE

This Video

* How long do local variables last in Java?
* When can they be accessed?

* Not talking about instance variables/objects-
--we already went over how long those last

24

Methods

* Any variable declared in a method only lasts
until the end of the method

Loops/if statements/etc.

* Any variable declared in a loop (or an if
statement, etc.) only lasts until the end of
that loop

Slightly more technical outlook

* Local variables only last inside the curly
braces in which they were created

* Even if you add in extra braces
e Unclear why you’d want to!
e But worth bearing in mind:

* Variables cannot be accessed after the {} they
are in is closed

Takeaways

Objects are “pointed to” rather than being
stored inline

Take care when copying objects

But, helpful when passing arguments to
functions since changes to instance variables
persist

Autoboxing and garbage collection help us
out in the background

Keep an eye out for scope!

