
CSCI 136
Data Structures &

Advanced Programming

The Map Interface



Video Outline

• Maps!
• The Map<K,V> interface

• A sample implementation
•List<Association<K,V>>

• Explore concepts in 
structure5.Hashtable
•Hash functions
•Collisions



Map Interface

Key methods for the interface Map<K, V>
• int size() – returns number of entries in map
• boolean isEmpty() – true if there are no entries
• void clear() – remove all entries from map
• boolean containsKey(K key) – true if key exists 
in map

• boolean containsValue(V val) – true if val
exists at least once in map

• V get(K key) – get value associated with key
• V put(K key, V val) – insert mapping from key to 
val, returns value replaced (old value) or null

• V remove(K key) – remove mapping from key to val



Map Interface

Big picture: A Map stores a set of key-value pairs 
that we can insert/update and query
• We’ve already explored the notion of key value 
pairs with the Association<K,V> “container 
class”

• A set is an unordered collection of unique items 
(i.e., no duplicates)
• By unordered, we don’t mean that we are prohibited from ordering 

items in our data structure; we just aren’t required to maintain any 
particular structure from an external user’s perspective



Map Interface

Other methods for Map<K,V>:
• void putAll(Map<K,V> other) – puts all key-value 
pairs from an existing Map into the current map
• Set<K> keySet() – return set of keys in map
• Structure<V> valueSet() – return collection of 
values
• Set<Association<K,V>> entrySet() – return set 
of key-value pairs from map
• boolean equals() – true if two maps are entrywise
equal
• int hashCode() – returns hash code associated with 
values in map (stay tuned…)



public class Dictionary {

public static void main(String args[]) {
Map<String, String> dict = new Hashtable<String, String>();
…
dict.put(word, def);
…
System.out.println("Def: " + dict.get(word));

}

}

A Dictionary Using Map<K,V>

What’s missing from the Map API that a physical dictionary
lets us do efficiently?

successor(key), predecessor(key)



Simple Implementation: MapList

• Uses a SinglyLinkedList of 
Associations as underlying data structure

• How would we implement get(K key)?
• How would we implement put(K key, V 
val)?



MapList.java

public class MapList<K, V> implements Map<K, V>{

//instance variable to store all key-value pairs
SinglyLinkedList<Association<K,V>> data; 

public V put (K key, V value) {
Association<K,V> temp = 

new Association<K, V> (key, value);
// recall: association equals() just compares keys
// remove old K-V pair if one exists (no dups allowed!)
Association<K,V> result = data.remove(temp);

data.addFirst(temp);
if (result == null)

return null;
else 

return result.getValue();
}

}



Simple Map Implementation

•What is MapList’s running time for:
•containsKey(K key)?
•containsValue(V val)?

• O(n) time :(
• We want O(1)!



Search/Locate Revisited

•How long does it take to search for objects in 
(unsorted) Vectors and Lists?
•O(n) on average

•How about in BSTs?
•O(log n)

•Can this be improved?
•Hashtables can locate objects in roughly O(1) time!

• (in future videos we will cover the reasons that O(1) 
performance is a fuzzy claim)

•Let’s look at a real-world example to help us think 
through the strategy



Example from Bailey

“We head to a local appliance store to pick up a 
new freezer. When we arrive, the clerk asks us 
for the last two digits of our home telephone 
number! Only then does the clerk ask for our 
last name. Armed with that information, the 
clerk walks directly to a bin in a warehouse of 
hundreds of appliances and comes back with 
the freezer in tow.”



00 01 02 03



00 01 02 03



Jannen

00 01 02 03

McCauley

Barowy Lenhart
Singh

Bailey



Example from Bailey

“We head to a local appliance store to pick up a new freezer. When 
we arrive, the clerk asks us for the last two digits of our home 
telephone number! Only then does the clerk ask for our last name. 
Armed with that information, the clerk walks directly to a bin in a 
warehouse of hundreds of appliances and comes back with the 
freezer in tow.”

• How does this relate to the Map interface?
• What is Key? What is Value?
• Why those choices?

• Are names evenly distributed?
• Are the last 2 phone digits evenly distributed?



Hashing in a Nutshell

• Assign objects to “bins” based on key
• When searching for object, jump directly to the 
appropriate bin (and ignore the rest)

• If there are multiple objects assigned to the 
target bin, then search for the right object

• Important Insight: Hashing works best when 
objects are evenly distributed among bins
•Phone numbers are randomly assigned, last names are 
not!



Implementing a HashTable

• How can we represent bins?
• Slots in array (how to grow later)
•How do we find a key’s bin?
• We use a hash function that converts keys into 
integers 

• In Java, all Objects have 
public int hashCode()
• Hashing function is one way:

• Can convert a key -> hashCode
• Cannot convert a hashCode -> key

• Hashing function is deterministic



hashCode() rules

https://docs.oracle.com/javase/7/docs/api/java/lang/Object.html#hashCode()



Implementing HashTable

• So we have a “magic” method that lets us jump 
directly to an object’s bin: obj.hashCode().
How do we add Associations to the array?
• Problem 1: hashCode() yields an int, but our array 
may be relatively small.
• How do we convert arbitrary ints to array locations?

• Problem 2: We can represent 232 unique int, but there 
may be infinitely many values that an object can take on 
(e.g., String).
• By the pigeonhole principle, some Strings will have to “share” a 

hashcode!



Implementing HashTable

• So we have a “magic” function that lets us jump directly 
to an object’s bin: obj.hashCode().
How do we add Associations to the array?
• We can use mod (%) to map an into to an array index

•array[o.hashCode() % array.length] = o;

• Problem 2: If two objects have the same “spot”, the 
above expression overwrites
•This is called a collision



Navigating HashTable Collisions

• Collisions make life hard
• Collisions are possible if:

•two unique objects map to the same hashCode
•two unique hashCodes map to the same array index

• We either need to guarantee that collisions can’t 
happen (which we can’t do) OR build a strategy 
that can tolerate them
•We may need to sacrifice some performance to 
guarantee correctness



Navigating HashTable Collisions

• In a subsequent video, we’ll discuss two 
approaches to handling collisions
•Linear probing (sometimes called open addressing)
•External chaining

• Both strategies work and both are used in 
practice. External chaining is “easier to 
implement”, but linear probing can have better 
“cache locality”. Understanding both techniques 
is important.



Map Intro Summary

• Map<K,V> defines an interface for storing and 
querying individual key-value pairs.

• If we implement the interface using Lists that 
hold associations (Vector, SLL, etc), 
inserting/querying items is O(n)

• If we instead use binary search trees, operations 
are O(logn)

• Hashtables promise O(1)-“ish” operations, but 
we need to manage collisions


