CSCI 136 Data Structures & Advanced Programming

Mathematical Induction

For best results: Review the materials discussing recursion!

Recursive Contains

```
Recall our recursive contains method for a Singly-Linked List
// Pre: value is not null
public static boolean contains(Node<String> n, String v) {
    if( n == null ) return false;
    return v.equals(n.value()) || contains(n.next(), v);
}
```

How could we convince ourselves it's correct?

- Does it work on an empty list? [n is null]
- Does it work on a list of size I? [n.next() is null]
- Does it work on a list of size 2? [n.next() is a list of size I]
 Key Observation:
- Assuming that contains works on <u>all lists of size n</u>, (for <u>any $n \ge 0$ </u>)
- Allows us to conclude that it works for <u>all lists of size n+1</u> !
- And since contains works on all lists of size 0...It always works!

- The mathematical sibling of recursion is induction
- Induction is a proof technique
- Reflects the structure of the natural numbers
- Used to simultaneously prove an infinite number of theorems! For example:
 - Contains functions correctly for all lists of size o
 - Contains functions correctly for all lists of size |
 - Contains functions correctly for all lists of size 2
 - • • •

Let's make this notion formal and precise

Given: Boolean statements P_0 , P_1 , ..., P_n , That is

- Each statement P_i is either true or false (boolean)
- There is a statement P_n for each integer $n \ge 0$
- We would like to prove that each statement is true. We do this by
- Directly showing that P₀ is true
- Then showing that whenever P_n is true for some $n \ge 0$, then P_{n+1} is also true

We can then conclude that all of the statements are true!

Principle of Mathematical Induction (Weak)

Let P_0 , P_1 , P_2 , ... Be a sequence of statements, each of which could be either true or false. Suppose that

I. P_0 is true, and

2. For every $n \ge 0$, if P_n is true, then P_{n+1} is true

Then all of the statements are true!

Notes

• Often Property 2 is stated as

2. For every n > 0, if P_{n-1} is true, then P_n is true

• We call Step I Verifying the base case(s) and Step 2 verifying the induction step (or the induction hypothesis)

• Example: Prove that for every $n \ge 0$

$$P_n: 0+1+...+n = \frac{n(n+1)}{2}$$

- Proof by induction:
 - Base case: P_n is true for n = 0 (just check it!)
 - Induction step: If P_n is true for some $n \ge 0$, then P_{n+1} is true.

 $P_{n+1}: 0+1+\ldots+n+(n+1) = \frac{(n+1)\big((n+1)+1\big)}{2} = \frac{(n+1)(n+2)}{2}$

ls P_{n+1} true? Check: $(0+1+...+n)+(n+1) = \frac{n(n+1)}{2} + (n+1) = \frac{(n+1)(n+2)}{2}$

First equality holds by assumed truth of P_n!

An Aside: Summation Notation

A sum of the form $a_0 + a_1 + \cdots + a_n$ is frequently shortened to

Using this notation, the induction step of our previous proof would look like

• Induction step: If P_n is true for some $n \ge 0$, then P_{n+1} is true. $P_{n+1}: \sum_{i=1}^{n+1} i = \frac{(n+1)((n+1)+1)}{2} = \frac{(n+1)(n+2)}{2}$

Is
$$P_{n+1}$$
 true?

Check:

$$\sum_{i=0}^{n+1} i = \underbrace{\left(\sum_{i=0}^{n} i\right)}_{i=0}^{n+1} (n+1) = \underbrace{\frac{n(n+1)}{2}}_{2}^{n+1} + (n+1) = \frac{(n+1)(n+2)}{2}$$

The second equality holds by assumed truth of P_n !

Prove:
$$2^0 + 2^1 + \dots + 2^n = \sum_{i=0}^n 2^i = 2^{n+1} - 1$$

Proof: Using summation notation

• Base case: n = 0

• LHS:
$$\sum_{i=0}^{0} 2^{i} = 2^{0} = 1$$

• RHS:
$$2^{0+1} - 1 = 2 - 1 = 1$$

• Induction Step: Show that, for $n \ge 0$, whenever

$$\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$$

• Then

$$\sum_{i=0}^{n+1} 2^i = 2^{(n+1)+1} - 1$$

Continued: Prove
$$2^0 + 2^1 + \dots + 2^n = \sum_{i=0}^n 2^i = 2^{n+1} - 1$$

Induction Step: Show that, for $n \ge 0$, whenever $\sum_{i=0}^{n} 2^{i} = 2^{n+1} - 1$

Then

$$\sum_{i=0}^{n+1} 2^i = 2^{(n+1)+1} - 1 = 2^{n+2} - 1$$

Well,

$$\sum_{i=0}^{n+1} 2^{i} = \left(\sum_{i=0}^{n} 2^{i}\right) + 2^{n+1} = \left(2^{n+1} - 1\right) + 2^{n+1} = 2^{n+2} - 1$$

Prove: $1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$

Note: This starts at n=1, not n=0. Is this a problem?

- No.We just
 - Make our base case n=1, and
 - Show that whenever the property holds for some n≥l then it holds for n+l

Base Case: n = I

LHS: $1^3 = 1$ and RHS: $1^2 = 1$ Induction step: Assume that for some $n \ge 1$

$$1^3 + 2^3 + \dots + n^3 = (1 + 2 + \dots + n)^2$$

Now show that

$$1^3 + 2^3 + \dots + (n+1)^3 = (1+2+\dots+(n+1))^2$$

IS: $1^3 + 2^3 + \dots + (n+1)^3 = (1+2+\dots+(n+1))^2$

$$1^{3} + 2^{3} + \dots + (n + 1)^{3} = \underbrace{(1^{3} + 2^{3} + \dots + n^{3})}_{=} + (n + 1)^{3}$$

Induction

$$= \underbrace{(1 + 2 + \dots + n)^{2}}_{=} + (n + 1)^{3}$$

$$= \underbrace{(n(n + 1))^{2}}_{2} + (n + 1)^{3}$$

$$= (n + 1)^{2} \underbrace{\left(\frac{n}{2}\right)^{2} + (n + 1)}_{4}$$

$$= (n + 1)^{2} \underbrace{\left(\frac{n^{2} + 4n + 4}{4}\right)}_{4}$$

$$= \underbrace{(n + 1)^{2}(n + 2)^{2}}_{4}$$

$$= \underbrace{\left(\frac{(n + 1)(n + 2)}{2}\right)^{2}}_{2}$$

$$= (1 + 2 + \dots + (n + 1))^{2} \checkmark$$

12

What about Recursion?

- What does induction have to do with recursion?
 - Same form!
 - Base case
 - Inductive case that uses simpler form of problem

Example : Factorial

```
public static int fact(int n) {
    if (n==0) return 1;
    else return n*fact(n-1);
}
```

Example: factorial

- Prove that fact(n) requires n multiplications
 - Base case: n = 0 returns I, using 0 multiplications
 - Assume true for some $n \ge 0$, so fact(n) requires n multiplications.
 - fact(n+1) performs one multiplication (n+1)*fact(n). But, by induction, fact(n) requires n multiplications. Therefore fact(n) requires 1+n multiplications.

Recursive Contains

Recall again our recursive contains method for a Singly-Linked List

```
// Pre: value is not null
public static boolean contains(Node<String> anode, String v) {
    if( aNode == null ) return false;
    return v.equals(aNode.value()) || contains(aNode.next(), v);
}
```

}

Claim: contains works correctly for any list of size $n \geq 0$

- Base Case: n=0 [aNode is null]
 - The <code>if</code> statement immediately returns <code>false</code>—the correct answer \checkmark
- Induction step
 - Suppose contains works correctly on all lists of size n, for some $n \ge 0$.
 - Show that it works correctly on all lists of size n+1
- Proof: If $n \ge 0$, then $n+1 \ge 1$, so the first call to contains will execute the final line of the method.
 - If v.equals(aNode.value() is true, then correct result is returned
 - Otherwise, contains is called on a list of size n, which by assumption returns the correct result (our *induction hypothesis*)

Counting Method Calls

- Example: Fibonacci
 - Prove that fib(n) makes at least fib(n) calls to fib()
 - Base cases: n = 0: | call; n = 1; | call
 - Assume that for some $n \ge 2$, fib(n-1) makes at least fib(n-1) calls to fib() and fib(n-2) makes at least fib(n-2) calls to fib().
 - Claim: Then fib(n) makes at least fib(n) calls to fib()
 - I initial call: fib(n)
 - By induction: At least fib(n-1) calls for fib(n-1)
 - And as least fib(n-2) calls for fib(n-2)
 - Total: I + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

- Note: Need two base cases!
- Aside: Can show by induction that for n > 10: fib(n) > (1.5)ⁿ
 - Thus the number of calls grows exponentially!
 - Verifying our empirical observation that computing fib(45) was slow!

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

- Let P_0 , P_1 , P_2 , ... be a sequence of statements, each of which could be either true or false. Suppose that
 - I. P_0 and P_1 are true, and
 - 2. For all $n \ge 2$, if P_{n-1} and P_{n-2} are true, then so is P_n .

Then all of the statements are true!

Other versions:

- Can have k > 2 base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array a[] of positive integers in increasing order, and an integer x, find location of x in a[].
 - Take "indexOf" approach: return -1 if x is not in a[]

Binary Search takes O(log n) Time

Can we use induction to prove this?

- Induction on size of slice : n = high low + 1
- Claim: If n > 0, then recBinSrch performs at most c (I + log n) operations
 - where c is *twice* the number of statements in recBinSrch
 - All logs are base 2 unless specified differently
 - Recall : log I = 0
- Base case: n = I: Then low = high so only c statements execute (method runs twice) and c ≤ c(I+log I) ✓
- Assume that claim holds for some n ≥ 1, does it hold for n+1? [Note: n+1 > 1, so low < high]
- Problem: Recursive call is *not* on n : it's on n/2.
- Solution: We need a better version of the PMI....

Principle of Mathematical Induction (Strong)

Let P_0 , P_1 , P_2 , ... be a sequence of statements, each of which could be either true or false. Suppose that, for some $k \ge 0$

I. P_0 , P_1 , ..., P_k are true, and

2. For <u>every</u> $n \ge k$, if P_0 , P_1 , ..., P_n are true, then P_{n+1} is true

Then *all* of the statements are true!

Binary Search takes O(log n) Time

Try again now:

- Assume that for some n ≥ 1, the claim holds for all i ≤ n, does claim hold for n+1?
- Yes! Either
 - x = a[mid], so a constant number of operations are performed, or
 - RecBinSearch is called on a sub-array of size n/2, and by induction, at most c(1 + log (n/2)) operations are performed.
 - This gives a total of at most c + c(1 + log(n/2)) operations
 - We want to show that this is at most c(1 + log(n+1))....

Binary Search takes O(log n) Time

This gives a total of at most $c + c\left(1 + \log_2 \frac{n}{2}\right)$ operations

- c statements in original call to recBinSrch, and
- $c\left(1 + \log_2 \frac{n}{2}\right)$ statements in recursive calls So

$$c + c\left(1 + \log_2 \frac{n}{2}\right) = c + c\left(\log_2 2 + \log_2 \frac{n}{2}\right)$$
$$= c + c\left(\log_2 2 \cdot \frac{n}{2}\right)$$
$$= c + c\log_2 n$$
$$= c(1 + \log_2 n)$$

which is what we wanted to show \checkmark

In Summary

- Two versions of the principle of mathematical induction
 - Strong: Given the truth of a fixed number of base cases P_1 , ..., P_k , if we can show that for every $n \ge k$:
 - If P_1 , ..., P_n are true, then P_{n+1} is true

Then all of the statements are true

- Weak: Given the truth of a fixed number of base cases P₁, ..., P_k, if we can show that for every n > k:
 - If the k statements P_{n-k} , $P_{n-(k-1)}$, ..., P_{n-1} are true, then P_n is true Then all of the statements are true
 - That is, if for every n > k we can show that whenever the k statements immediately preceding statement P_n are true, then P_n is true
- Strong induction is needed when a problem is being decomposed into subproblems much smaller size