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Mathematical Induction
For best results: Review the materials discussing recursion!



Recursive Contains
Recall our recursive contains method for a Singly-Linked List
// Pre: value is not null
public static boolean contains(Node<String> n, String v) {

if( n == null ) return false;
return v.equals(n.value()) || contains(n.next(), v);

}

How could we convince ourselves it's correct?
• Does it work on an empty list? [n is null]
• Does it work on a list of size 1? [n.next() is null]
• Does it work on a list of size 2? [n.next() is a list of size 1]
Key Observation:
• Assuming that contains works on all lists of size n, (for any n ≥ 0)
• Allows us to conclude that it works for all lists of size n+1 !
• And since contains works on all lists of size 0…It always works!



Mathematical Induction

• The mathematical sibling of recursion is induction
• Induction is a proof technique

• Reflects the structure of the natural numbers
• Used to simultaneously prove an infinite number of 

theorems! For example:
• Contains functions correctly for all lists of size o
• Contains functions correctly for all lists of size 1

• Contains functions correctly for all lists of size 2

• ….



Mathematical Induction

Let's make this notion formal and precise
Given: Boolean statements P0, P1, …, Pn, … . That is

• Each statement Pi is either true or false (boolean)
• There is a statement Pn for each integer n ≥ 0

We would like to prove that each statement is true.
We do this by

• Directly showing that P0 is true
• Then showing that whenever Pn is true for some n ≥ 0, 

then Pn+1 is also true
We can then conclude that all of the statements are true!



Mathematical Induction
Principle of Mathematical Induction (Weak)

Let P0, P1, P2, ... Be a sequence of statements, each of 
which could be either true or false. Suppose that

1. P0 is true, and

2. For every n ≥ 0, if Pn is true, then Pn+1 is true

Then all of the statements are true!

Notes
• Often Property 2 is stated as

2. For every n > 0, if Pn-1 is true, then Pn is true

• We call Step 1 Verifying the base case(s) and Step 2 
verifying the induction step (or the induction hypothesis)



Mathematical Induction
• Example: Prove that for every n ≥ 0

𝑃! ∶ 0 + 1 + …+ 𝑛 = 
!(!#$)

&

• Proof by induction:
• Base case: Pn is true for n = 0 (just check it!)
• Induction step: If Pn is true for some n≥0, then 

Pn+1 is true.

𝑃!"#: 0 + 1 + …+ 𝑛 + 𝑛 + 1 =
𝑛 + 1 𝑛 + 1 + 1

2
=
(𝑛 + 1)(𝑛 + 2)

2
Is 𝑃!"# true?

Check: 0 + 1 + …+ 𝑛 + 𝑛 + 1 = ! !"#
$

+ 𝑛 + 1 = (!"#)(!"$)
$

• First equality holds by assumed truth of Pn!



An Aside: Summation Notation

Using this notation, the induction step of our previous 
proof would look like
• Induction step: If Pn is true for some n≥0, then Pn+1 is true.

𝑃!"#:#
$%&

!"#

𝑖 =
𝑛 + 1 𝑛 + 1 + 1

2
=
(𝑛 + 1)(𝑛 + 2)

2

Is 𝑃!"# true?

Check:

0
'()

!"#

𝑖 = 0
'()

!

𝑖 + (𝑛 + 1) =
𝑛 𝑛 + 1

2
+ 𝑛 + 1 =

(𝑛 + 1)(𝑛 + 2)
2

The second equality holds by assumed truth of Pn!

A sum of the form 𝑎2 + 𝑎$ +⋯𝑎!
is frequently shortened to

0
'()

!

𝑎'



Prove:

Proof: Using summation notation
• Base case: 𝑛 = 0
• LHS: ∑4522 24 = 22 = 1
• RHS: 22#$ − 1 = 2 − 1 = 1

• Induction Step: Show that, for 𝑛 ≥ 0, whenever

0
'()

!

2' = 2!"# − 1

• Then

0
'()

!"#

2' = 2(!"#)"# − 1

2, + 2- +⋯+ 2. =%
/0,

.

2/ = 2.1- − 1



Continued: Prove

Induction Step: Show that, for 𝑛 ≥ 0, whenever

0
'()

!

2' = 2!"# − 1

Then

0
'()

!"#

2' = 2(!"#)"# − 1 = 2!"$ − 1

Well,

0
'()

!"#

2' = 0
'()

!

2' + 2!"# = 2!"# − 1 + 2!"# = 2!"$ − 1

2, + 2- +⋯+ 2. =%
/0,

.

2/ = 2.1- − 1



Mathematical Induction
Prove: 17 + 27 +⋯+ 𝑛7 = 1 + 2 +⋯+ 𝑛 &

Note: This starts at n=1, not n=0. Is this a problem?
• No. We just
• Make our base case n=1, and
• Show that whenever the property holds for some n≥1 

then it holds for n+1
Base Case: n = 1

LHS: 12 = 1 and RHS: 13 = 1
Induction step:  Assume that for some n ≥ 1

12 + 22 +⋯+ 𝑛2 = 1 + 2 +⋯+ 𝑛 3

Now show that
12 + 22 +⋯+ (𝑛 + 1)2= 1 + 2 +⋯+ (𝑛 + 1) 3



12

Induction☞

IS: 17 + 27 +⋯+ (𝑛 + 1)7= 1 + 2 +⋯+ (𝑛 + 1) &

1* + 2* +⋯+ 𝑛 + 1 * = 1* + 2* +⋯+ 𝑛* + 𝑛 + 1 *

= 1 + 2 +⋯+ 𝑛 $ + 𝑛 + 1 *

=
𝑛 𝑛 + 1

2

$

+ 𝑛 + 1 *

= 𝑛 + 1 $ 𝑛
2

$
+ 𝑛 + 1

= 𝑛 + 1 $ 𝑛$ + 4𝑛 + 4
4

=
𝑛 + 1 $ 𝑛 + 2 $

4

=
(𝑛 + 1)(𝑛 + 2)

2

$

= 1 + 2 +⋯+ (𝑛 + 1) $



What about Recursion?

• What does induction have to do with recursion?
• Same form!

• Base case
• Inductive case that uses simpler form of problem



Example : Factorial

public static int fact(int n) {
if (n==0) return 1;
else return n*fact(n-1);

}

• Example: factorial
• Prove that fact(n) requires n multiplications

• Base case: n = 0 returns 1,  using 0 multiplications
• Assume true for some n≥0, so fact(n) requires n multiplications.

• fact(n+1) performs one multiplication (n+1)*fact(n).  But, by 
induction, fact(n) requires n multiplications. Therefore fact(n) 
requires 1+n multiplications.



Recursive Contains
Recall again our recursive contains method for a Singly-Linked List
// Pre: value is not null
public static boolean contains(Node<String> anode, String v) {

if( aNode == null ) return false;
return v.equals(aNode.value()) || contains(aNode.next(), v);

}

Claim: contains works correctly for any list of size n ≥ 0
• Base Case: n=0 [aNode is null]

• The if statement immediately returns false—the correct answer

• Induction step
• Suppose contains works correctly on all lists of size n, for some n ≥ 0.
• Show that it works correctly on all lists of size n+1

• Proof: If n ≥ 0, then n+1 ≥ 1, so the first call to contains will 
execute the final line of the method.
• If v.equals(aNode.value() is true, then correct result is returned
• Otherwise, contains is called on a list of size n, which by assumption 

returns the correct result (our induction hypothesis)



Counting Method Calls

• Example: Fibonacci
• Prove that fib(n) makes at least fib(n) calls to fib()

• Base cases: n = 0: 1 call; n = 1; 1 call 

• Assume that for some n ≥ 2, fib(n-1) makes at least fib(n-1) calls to 
fib() and fib(n-2) makes at least fib(n-2) calls to fib().

• Claim: Then fib(n) makes at least fib(n) calls to fib()
– 1 initial call: fib(n)
– By induction: At least fib(n-1) calls for fib(n-1)
– And as least fib(n-2) calls for fib(n-2)
– Total: 1 + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls

• Note: Need two base cases!
• Aside: Can show by induction that for n > 10: fib(n) > (1.5)n

• Thus the number of calls grows exponentially!
• Verifying our empirical observation that computing fib(45) was slow!



Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let P0, P1, P2, ... be a sequence of statements, each 
of which could be either true or false. Suppose that

1. P0 and P1 are true, and

2. For all n ≥ 2, if Pn-1 and Pn-2 are true, then so is Pn.

Then all of the statements are true!
Other versions:

• Can have k > 2 base cases
• Doesn’t need to start at 0



Example: Binary Search

• Given an array a[] of positive integers in increasing 
order, and an integer x, find location of x in a[].
• Take “indexOf” approach: return -1 if x is not in a[]

protected static int recBinSrch(int a[], int value,
int low, int high) {

if (low > high) return -1;
else {
int mid = (low + high) / 2; //mid index
if (a[mid] == value) return mid;
else if (a[mid] < value) //look high!

return recBinSarch(a, value, mid + 1, high);
else //look low!

return recBinSarch(a, value, low, mid - 1);
}

}



Binary Search takes O(log n) Time
Can we use induction to prove this?

• Induction on size of slice : n = high – low + 1
• Claim: If n > 0, then recBinSrch performs at most c (1+ log n) 

operations
• where c is twice the number of statements in recBinSrch

• All logs are base 2 unless specified differently
• Recall : log 1 = 0

• Base case: n = 1: Then low = high so only c statements 
execute (method runs twice) and c ≤ c(1+log 1)

• Assume that claim holds for some n ≥ 1, does it hold for n+1? 
[Note: n+1 > 1, so low < high]

• Problem: Recursive call is not on n : it’s on n/2.

• Solution: We need a better version of the PMI….



Mathematical Induction

Principle of Mathematical Induction (Strong)
Let P0, P1, P2, ... be a sequence of statements, each of 
which could be either true or false. Suppose that, for 
some k ≥ 0

1. P0, P1, ..., Pk are true, and
2. For every n ≥ k, if P0, P1, ..., Pn are true, then Pn+1 is true

Then all of the statements are true!



Binary Search takes O(log n) Time

Try again now:

• Assume that for some n ≥ 1, the claim holds for all 
i ≤ n, does claim hold for n+1? 

• Yes! Either
• x = a[mid], so a constant number of operations are 

performed, or

• RecBinSearch is called on a sub-array of size n/2, and by 
induction, at most c(1 + log (n/2)) operations are 
performed.
• This gives a total of at most c + c(1 + log(n/2)) operations

• We want to show that this is at most c(1 + log(n+1))….



Binary Search takes O(log n) Time
This gives a total of at most 𝑐 + 𝑐 1 + log3

.
3 operations

• 𝑐 statements in original call to recBinSrch, and

• 𝑐 1 + log3
.
3

statements in recursive calls

So

𝑐 + 𝑐 1 + log&
𝑛
2

= 𝑐 + 𝑐 log& 2 + log&
𝑛
2

= 𝑐 + 𝑐 log&2 5
!
&

= 𝑐 + 𝑐 log& 𝑛
= 𝑐(1 + log& 𝑛)

which is what we wanted to show



In Summary

• Two versions of the principle of mathematical induction
• Strong: Given the truth of a fixed number of base cases P1, ..., Pk, 

if we can show that for every n ≥ k:
• If P1, ..., Pn are true, then Pn+1 is true

Then all of the statements are true

• Weak: Given the truth of a fixed number of base cases P1, ..., Pk, 
if we can show that for every n > k:
• If the k statements Pn-k, Pn-(k-1), ..., Pn-1 are true, then Pn is true

Then all of the statements are true
• That is, if for every n > k we can show that whenever the k statements 

immediately preceding statement Pn are true, then Pn is true

• Strong induction is needed when a problem is being 
decomposed into subproblems much smaller size


