
CSCI 136
Data Structures &

Advanced Programming

“Heapifying” an Array

Video Outline

•Heaps
•Quick review of implementation strategies
•Creating heaps from unsorted arrays

•A top-down approach
•A bottom-up approach
•Some analysis + proofs

VectorHeap Design: Recap

•A heap is a semi-sorted tree
•Rather than a “global” sort ordering, “partial” ordering
is maintained for all root-to-leaf paths

•Data stored directly in an implicit binary tree
•Children of i are at 2i+1 and 2i+2
•Parent is at (i-1)/2

•Tree is always complete
•A prefix of the Vector is always occupied–no gaps

VectorHeap Operations: Recap

•Strategy: perform tree modifications that always
preserve tree completeness, but may violate heap
property. Then fix.
•Add/remove never create gaps in between array
elements
• We always add in next available array slot (left-most available
spot in binary tree)

• We always remove using “final” leaf (rightmost element in array)
•When elements are added and removed, do small
amount of work to “re-heapify”
• pushDownRoot(): recursively swaps large element down the tree
• percolateUp(): recursively swaps small element up the tree

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a valid heap,
and you want to “heapify” V
•Method I: Top-Down

•Given V[0...k] satisfies the heap property
•Call percolateUp on item in location k+1
•Now, V[0..k+1] satisfies the heap property!

Grow valid heap region one element at a time

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
0 1 2 3 4 5 6

7

5 9

1 2 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]

0 1 2 3 4 5 6
5

7 9

1 2 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]

0 1 2 3 4 5 6
5

7 9

1 2 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]

0 1 2 3 4 5 6
1

5 9

7 2 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]

0 1 2 3 4 5 6
1

2 9

7 5 5 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]
[1 2 5 7 5 9 4]

0 1 2 3 4 5 6
1

2 5

7 5 9 4

Practice Top-Down
int a[7] = {7,5,9,1,2,5,4};
for (int i = 0; i < a.length; i++)

percolateUp(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[5 7 9 1 2 5 4]
[5 7 9 1 2 5 4]
[1 5 9 7 2 5 4]
[1 2 9 7 5 5 4]
[1 2 5 7 5 9 4]
[1 2 4 7 5 9 5]

0 1 2 3 4 5 6
1

2 4

7 5 9 5

Heapifying A Vector (or array)
Problem: You are given a Vector V that is not a valid
heap, and you want to “heapify” V
•Method II: Bottom-up

•Given V[k..n] satisfies the heap property
•Call pushDown on item in location k-1
•Now, V[k-1..n] satisfies heap property!

Grow valid heap region one element at a time

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
0 1 2 3 4 5 6

7

5 9

1 2 5 4

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]

0 1 2 3 4 5 6
7

5 9

1 2 5 4

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]

0 1 2 3 4 5 6
7

5 4

1 2 5 9

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

0 1 2 3 4 5 6
7

1 4

5 2 5 9

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]
[7 1 4 5 2 5 9]

Practice Bottom-up
int a[7] = {7,5,9,1,2,5,4};
for (int i = a.length-1; i > 0; i--)

pushDownRoot(a, i);

0 1 2 3 4 5 6
1

2 4

7 5 5 9

a = [7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 9 1 2 5 4]
[7 5 4 1 2 5 9]
[7 1 4 5 2 5 9]
[1 2 4 7 5 5 9]

Let’s Compare

• Which is faster: Top down or Bottom Up?
• Q: Think about a complete binary tree. Where
do most of the nodes live?

• A: The leaves!
• Given that most of the nodes are leaves, should
we percolateUp or pushDown?

• Let’s analyze this more formally

1

2 4

7 5 5 9

Some Sums (for your toolbox)
Both of these can
be proven by
(weak) induction.

Try these proofs to
hone your skills!

Top-Down vs Bottom-Up

• Top-down heapify (percolate up): elements at depth d may
be swapped d times.

• The total # of swaps is:

!
"#$

%
𝑑2" = ℎ − 1 2%,$ = log 𝑛 − 1 2𝑛 + 2

• This is 𝑂(𝑛 log4𝑛)
• Some intuition: most of the elements are in the

lowest levels of the tree, so each of them might have
to move to root: 𝑂(log4𝑛) swaps per element

(recall: h = log n)

Top-Down vs Bottom-Up

•Bottom-up heapify (push down): elements at depth d may be
swapped h-d times.

•The total # of swaps is:

!
"#$

%
(ℎ − 𝑑)2" = 2%,$ − 2ℎ − 2

= 2𝑛 − 2log 𝑛 − 2

• This is 𝑂(𝑛) — it beats top-down!
• Some intuition: most of the elements are in the

lowest levels of the tree, so each of them will only be
pushed down (swapped) a small number of times

SO COOL!!!

(recall: h = log n)

Summary

•There are multiple valid ways to create a heap
from an unsorted array

•The choices we make impact performance, so
think carefully about the problem structure when
developing your approach

•The same arguments apply to min-heaps and
max-heaps: just inverse the swapping condition.

CSCI 136
Data Structures &

Advanced Programming

Heapsort: an in-place 𝑂 𝑛 log 𝑛 sort

Video Outline

• Heapsort
• Description
• Comparison to Quicksort
• When to use heapsort?

HeapSort

• How can we use a heap to sort?
• One idea (kind of like Selection Sort):

• Heapify the array (max heap, with largest element at
the root)

• Keep removing the maximum element and putting it at
the front

• This is the basic idea of heapsort. But how can
we do this efficiently?

HeapSort

Strategy:
1. Make a max-heap: array[0…n]

• array[0] is largest value
2. Take the largest value (array[0]) and swap it

with the rightmost leaf (array[n])
3. Call pushDownRoot on array[0…n-1]
Now our “heap“ is one element smaller, and
the largest element is at end of array.

Repeat until heap is empty and array is sorted

HeapSort

• Another O(n log n) sort method
• Heapsort is not stable

•The relative ordering of elements is not
preserved in the final sort

• Heapsort can be done in-place
•No extra memory required!!!
•Great for resource-constrained environments

0

500

1000

1500

2000

2500

0 200000 400000 600000 800000 1000000 1200000

Size

T
im

e
 (

m
s
)

Heap Sort

Quick Sort

Heap Sort vs QuickSort

Why Heapsort?

•Heapsort is slower than Quicksort in general
•Any benefits to heapsort?

• Guaranteed O(n log n) runtime
• In place

•Works well on mostly sorted data, unlike
quicksort

•Good for incremental sorting

Heapsort Use Case

• Is “worst case” ever actually useful?
• Yes! Heapsort is used sometimes
• C++ standard library uses quicksort, but if
quicksort is behaving badly it defaults to heapsort

• Also, (arguably) simpler than other efficient
sorting algorithms

Heap Summary

•Heaps are a partially ordered tree based on item
priority
•Invariants: parent has higher priority than each child

•Heaps provide:
•an efficient PriorityQueue implementation
•an efficient building block for sorting (heapsort)

•We can efficiently manage heaps in an implicit
array representation

