
CSCI 136
Data Structures &

Advanced Programming

Singly Linked List Variants

Singly Linked List Variants

2

Optimizing Singly Linked Lists

• Adding to the end of a linked list requires
traversing the entire list : An O(n) operation.

• We can improve this by keeping a reference to
the last element of the list ("A tail pointer")

• To add a new value to the end of the list

tail.setNext(new Node<E>(value))
tail = tail.nextelement;
count++;

3

Adding a Tail Reference

4

tail.setNext(new Node<String>("Jeannie"));

"Steve" nE "Andrea"nE"Kelly" nE "Duane" --

tailhead

tail = tail.nextelement;

"Steve" nE "Andrea"nE"Kelly" nE "Duane" -- "Jeannie" --

head tail

"Steve" nE "Andrea"nE"Kelly" nE "Duane" -- "Jeannie" --

head tail

count++

Adding a Tail Reference

• A new instance variable (tail) is added to the list

• Result
• addLast and getLast are fast: Now O(1) instead of

O(n)
• removeLast is not improved

• We need to know element before tail so we can reset tail
reference to previous element in list

• Side effects
• Two references must be maintainted: head and tail
• Potential for confusion

• head == tail could mean an empty list or list of size 1
5

AddFirst
Adding to front of empty list: myList.addFirst("Duane");

"Andrea"nE "Duane" --

tailhead

head

null

tail

null

"Steve" nE "Andrea"nE "Duane" --

tailhead

"Duane" --

tailhead

Adding to front of one-element list: myList.addFirst("Andrea");

Adding to front of a longer list: myList.addFirst("Steve");

AddFirst

public void addFirst(E value) {
// if empty list
if(size() == 0) {
head = new Node<E>(value);
tail = head;

// if not empty list
else {
head = new Node<E>(value, head);

}
count++;

}

CircularlyLinkedLists
Consider the Singly-Linked List structure with tail reference.

• Notice: The implementation never uses the fact that the tail
node has a null nextElement reference.

• Idea: Have the nextElement reference of the tail node refer
to the first node (head) of the list

• Results:
• head reference is no longer needed, just use tail.nextElement

instead!
• ALL operations on head are fast!
• addLast() is still fast
• Only modest additional complexity in implementation
• Can “cyclically reorder” (rotate) the list by changing tail reference

8

AddFirst on Circular List
Adding to front of empty list: myList.addFirst("Duane");

tail

null

Adding to front of one-element list: myList.addFirst("Andrea");

Adding to front of a longer list: myList.addFirst("Steve");

"Duane"nE

tail

"Andrea"nE "Duane"nE

tail

"Steve" nE "Andrea"nE "Duane"nE

tail

Circular AddFirst

public void addFirst(E value) {
// if empty list
if(size() == 0) {
tail = new Node<E>(value);
tail.setNext(tail);

// if not empty list
else {
tail.setNext(new Node<E>(value, tail.next());

}
count++;

}

Summary
Adding an additional piece of information to a singly list list can
speed up some operations.
• A tail reference speeds up adding to end of list

• but not removing from end of list

• A link from tail node to head node
• Removes need for head reference
• Doesn't reduce efficiency of any method
• Allows for list rotation

• In a future video, we'll see how adding further node references
can provide additional improvements in efficiency

11

