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CSCI 136
Data Structures &

Advanced Programming

Shortest Paths in Unweighted Graphs
(BFS)
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Finding Shortest Paths (Edge Count)

Recall: Distance from u to v in an undirected graph 
G is the number of edges in (any) minimum length 
path between u and v

Goal: Find distance between every pair of vertices
Assumption: G is connected
Idea: For each vertex v in G, build a BFS tree from v
• This tree will contain, for each u ≠ v, a shortest path 

from v to u
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The BFS Tree of Shortest Paths From A

For each vertex u≠A, store (u, parent(u) )
How: Use a Map<V,V> : The Routing Table for A
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Storing The Path Information
Given a BFS tree some vertex v
• For each vertex u ≠ v, store the pair (u, parent(u))
• From these pairs we can build the path from v to u

• By starting with u and working backwards

• Store the pairs in a Map<V,V> : the routingTable for v

• Store the Routing Tables in a Map<V, Map<V,V>>!
• Entries are (v, routingTable(v))

• To find path from v to u
• Get routing table for v from Routing Tables Map

• Look up u in the routing table for v
• Follow parents back from u to v



5

Finding Shortest Paths (Edge Count)
BuildRoutingTables(G) : Map of routing Tables

Create an empty Map routingTables of Maps
for each vertex v in G

build routing table for v
add the routing table for v to routingTables

GetShortestPath(RoutingTables, v, u) : List of vertices on path
routingTable= routing table of v from RoutingTables
if u isn't in the routing table for v return null // u and v in different components!
let path be an empty list
add u to path
while(u ≠ v)

u = routingTable.get(u) // u becomes u's parent
add u to beginning of path

return path
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Map BuildRoutingTable(G, v) // Using BFS of G starting at v
Create empty map routingTable to hold BFS tree from v
Create empty queue Q; enqueue v; mark v as visited; 
Add (v,v) to routingTable // v will have itself as predecessor
While Q isn’t empty

current ßQ.dequeue()
for each  unvisited neighbor u  of current 

add (u,current) to routingTable
add u to Q; mark u as visited

return routingTable;

Building a Routing Table
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Map  singleSourcePaths(G, v)
Create empty map routingTable

Create empty queue Q;
enqueue v
mark v as visited; 
Add (v,v) to routingTable
While Q isn’t empty

cur ßQ.dequeue()
for each  unvisited

neighbor u  of cur
add (u,cur) to routingTable
add u to Q
mark u as visited

return routingTable;

public static <V,E> Map<V,V> 
SSSP(Graph<V,E> g, V src) {
Map<V,V> routingTable =

new Hashtable<V,V>();
Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src);
routingTable.put(src,src);
while (!todo.isEmpty()) {

V node = todo.dequeue();
AbstractIterator<V> neighbors = 

(AbstractIterator<V>) 
g.neighbors(node);

while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {

routingTable.put(next,node);
todo.enqueue(next);
g.visit(next);

}}}
return routingTable;}
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public static <V,E> Map<V,V> SSSP(Graph<V,E> g, V src) {

Map<V,V> routingTable = new Hashtable<V,V>();
Queue<V> todo = new QueueList<V>();
todo.enqueue(src);
g.visit(src);
routingTable.put(src,src);

while (!todo.isEmpty()) {
V node = todo.dequeue();
AbstractIterator<V> neighbors = AbstractIterator<V>) 

g.neighbors(node);
while (neighbors.hasNext()) {
V next = neighbors.next();
if (!g.isVisited(next)) {
routingTable.put(next,node);
todo.enqueue(next);
g.visit(next);

}}}
return routingTable;}
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Finding Shortest Paths: Complexity
Using GraphListUndirected implementation
• singleSourcePaths(G,v) visits exactly those 

vertices and edges reachable from v
• It does not visit any other vertex or edge

• So, finding ith map Mi=(Vi,Ei) takes time 
O(|Vi|+|Ei|)

• Worst Case: G is connected: |Vi|= |V|, |Ei|=|E|
• Run time: O(|V| • (|V| + |E|))=O(|V|2+|V||E|)
• Could be O(|V|3)
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Summary & Observations
Using GraphListUndirected implementation
• Can compute shortest path information for all 

pairs of vertices
• In O(|V|2+|V||E|) time and O(|V|2) space

• Really O(|V|2+|E|) space, but |E| is O(|V|2) 

• A path can be computed from the tables in time 
proportional to the length of the path
• Assuming O(1) lookup times for Maps

• Up next: Shortest paths using edge weights!


