
CSCI 136
Data Structures &

Advanced Programming

Ordered Structures

Ordered Structures

Ordered Structures

• Until now, we have not required a specific
ordering to the data stored in our structures
• If we wanted the data ordered/sorted, we had to

do it ourselves

• We often want to keep data ordered
• Allows for faster searching

• Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)

The Structure Hierarchy
(partial view)

Ordering Structures

• The key to establishing order is being able to
compare objects

• We already know how to compare two
objects…how?

• Comparators and compare(T a, T b)
• Comparable interface and compareTo(T that)
• Two means to an end: which should we use?

BOTH!

Ordered Vectors
• We want to create a Vector that is always sorted

• When new elements are added, they are inserted into
correct position

• We still want many of the standard set of Vector methods
• add, remove, contains, size, iterator, …

• But not all!
• set(I, value) would be a problem!

• Two choices : Extend Vector or Contain a Vector
• We choose: Contain a Vector

• Allows for more focused interface
• Avoid corrupting order by controlled access to Vector

• We will implement a new class (OrderedVector)
• Start with Comparable
• Generalize to use Comparator instead of Comparable

OrderedVector Methods
public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<E> {
protected Vector<E> data;

public OrderedVector() {
data = new Vector<E>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

What does locate do?
• Uses binary search to find either

• Location of value if value is in Vector, or
• Location where value should be added

• uses iterative version of modified binary search

Binary Search in Sorted Array

Let's picture the idea: Search for 12

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
5 9 12 18 22 24 30 23 41 46 52 52 60 75 80

MMM M

Notes
• Need to keep track of current search range: low..high
• Need to know when search has failed
• Search for 11 : Same sequence until failure

L HHHLH

OrderedVector Methods
protected int locate(E target) {

Comparable<E> midValue;

int low = 0; // lowest location
int high = data.size(); // highest location
int mid = (low + high)/2; // low <= mid <= high

while (low < high) {
midValue = data.get(mid);

if (midValue.compareTo(target) < 0) low = mid+1;
else high = mid;

mid = (low+high)/2; // NB: 0 ≤ mid ≤ data.size()
}
return low;

}

OrderedVector Methods
public boolean contains(E value) {

int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {
if (contains(value)) {

int pos = locate(value);
return data.remove(pos);

}
else return null;

}

Performance:
locate - O(log n)
add - O(n)
contains - O(log n)
remove - O(n)

Adding Flexibility with Comparators

• We would like to be able to customize the
ordering of our ordered structures

• Idea: Add constructor that has a Comparator
parameter

• Q: How does structure know whether to use
the Comparator or the Comparable ordering?

• A: The NaturalComparator class....

An Aside: Natural Comparators

• NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<E> {

public int compare(E a, E b) {
return a.compareTo(b);

}
}

Generalizing OrderedVector
public class OrderedVector<E extends Comparable<E>>

implements OrderedStructure<E> {
protected Vector<E> data;
protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector(Comparator<E> comp) {
data = new Vector<E>();
this.comp = comp;

}

protected int locate(E value) {
//use modified binary search to find position of value
//return position
//use comp.compare instead of compareTo

}

//rest stays same…

A Confession

• The previous slide demonstrated how to add
flexibility to the OrderedVector class using
Comparators

• Structure5 did not implement this use of
Comparators for the OrderedVector class!

• But did implement it for OrderedList!
• Let's take a look….

Ordered Lists

• Similar to OrderedVector
• Can’t efficiently use SinglyLinkedList like

OrderedVector used Vector
• Most methods would traverse list multiple times

• So, we just build a SinglyLinkedList-like
structure

• add, contains, remove runtime?
• All O(n) : Must traverse list

• Let's look at a few details….

OrderedList Methods
public class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements
OrderedStructure<E> {

protected Node<E> data; // smallest value
protected int count; // size of list
protected Comparator<? super E> ordering;

public OrderedList() {
this(new NaturalComparator<E>());

}
public OrderedList(Comparator<? super E> ordering){

this.ordering = ordering;
clear();

}

OrderedList Methods
public void clear() {

data = null;
count = 0;

}
public boolean contains(E value) {

Node<E> finger = data; // target

while ((finger != null) &&
ordering.compare(finger.value(),value)<0)

finger = finger.next();

return finger!=null && value.equals(finger.value());
}

What Could Go Wrong?

• Students compared to
each other by GPA

• Suppose next
semester I get a 3.7
and Jeannie gets a 3.3

OrderedVector

Duane
4.0

Jeannie
3.5

Bill
3.3

Students

What’s the problem?

• We have to recompute GPAs each semester
• What happens if the values are allowed to change?

• We may need to resort vector
• But since this isn’t part of the interface, it may be forgotten

• Options:
• Avoid changing values in OrderedStructures
• Incorporate an update method that repositions element

• Incorporate a resort method
• This invites adding a “setComparator” method....

• Always update a value by removing and re-adding

Bonus : Type Safety & Generics
• Question: Since String extends Object, does List<String> extend

List<Object>?
• I.e., can I say List<Object> = new List<String>()?

• No. It would compromise the type system:
List<String> slist = new List<String>();
List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

• It generates a compiler error.
• On the other hand…

String[] sa = {“I”, “love”, “java”, “!”};
Object[] oa = sa;
oa[1] = new Object()); // This would be bad!

• …actually compiles
• But causes a run-time error!

Summary & Observations
• Imposing order on the elements in a structure can

improve performance of order-related queries.
• A sorted Vector improves search from 𝜭(n) to 𝜭(log n)

• Didn't improve search for linked list, but…

• Consider the Rank Problem: Given a collection of
comparable objects, find the kth smallest (or kth largest)
object in the collection.
• How would you do this with an ordered linked list?
• How would you do this with an unordered linked list?!

• Using Comparators allows ordered structures to
order the same data in a variety of ways.
• Especially if the Comparator can be replaced!

