CSCI 136
Data Structures &
Advanced Programming

Ordered Structures



Ordered Structures



Ordered Structures

e Until now, we have not required a specific
ordering to the data stored in our structures

e If we wanted the data ordered/sorted, we had to
do it ourselves

* We often want to keep data ordered
* Allows for faster searching

* Easier data mining - easy to find best, worst, and
median values, as well as rank (relative position)



The Structure Hierarchy

Interface

List

AbstractList
A

(partial view)
Abstract Class Class
Structure
OrderedStructure
AbstractStructure
OrderedVector OrderedlList

-

Vector

SinglyLinkedList

DoublyLinkedList




Ordering Structures

The key to establishing order is being able to
compare objects

We already know how to compare two
objects...how!

Comparators and compare(T a, T b)
Comparable interface and compareTo(T that)

Two means to an end: which should we use?

BOTH!



Ordered Vectors

* We want to create a Vector that is always sorted

* When new elements are added, they are inserted into
correct position

* We still want many of the standard set of Vector methods
* add, remove, contains, size, iterator, ...

e But not all!
* set(l, value) would be a problem!
e Two choices : Extend Vector or Contain a Vector

* We choose: Contain a Vector
* Allows for more focused interface
e Avoid corrupting order by controlled access to Vector

* We will implement a new class (OrderedVector)
e Start with Comparable

* Generalize to use Comparator instead of Comparable



OrderedVector Methods

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<E> {
protected Vector<E> data;

public OrderedVector() {
data = new Vector<iE>();

}

public void add(E value) {
int pos = locate(value);
data.add(pos, value);

}

What does locate do!?

e Uses binary search to find either
* Location of value if value is in Vector, or
* Location where value should be added

* uses iterative version of modified binary search



Binary Search in Sorted Array

Let's picture the idea: Search for 12

LT

5 18 22 24 30 23 41 46 52 52 60 75 80

totrr :

L LH H H H

Notes
* Need to keep track of current search range: low. .high
* Need to know when search has failed

* Search for || : Same sequence until failure



OrderedVector Methods

protected int locate(E target) {

Comparable<E> midValue;

int low = 0; // lowest location
int high = data.size(); // highest location
int mid = (low + high)/2; // low <= mid <= high

while (low < high) {
midValue = data.get(mid);

if (midValue.compareTo(target) < 0) low = mid+1;
else high = mid;

mid = (lowt+high)/2; // NB: 0 = mid = data.size()
}

return low;



OrderedVector Methods

public boolean contains(E value) {
int pos = locate(value);
return pos < size() && data.get(pos).equals(value);

}

public Object remove (E value) {
if (contains(value)) {
int pos = locate(value);
return data.remove(pos);

}
else return null;
}
Performance:
locate - O(log n)
add - O(n)

contains - O(log n)
remove - O(n)



Adding Flexibility with Comparators

* We would like to be able to customize the
ordering of our ordered structures

* |dea: Add constructor that has a Comparator
parameter

e Q: How does structure know whether to use
the Comparator or the Comparable ordering?

* A: The NaturalComparator class....



An Aside: Natural Comparators

* NaturalComparators bridge the gap between
Comparators and Comparables

class NaturalComparator<E extends Comparable<E>>
implements Comparator<iE> {

public int compare(E a, E b) {
return a.compareTo(b);



Generalizing OrderedVector

public class OrderedVector<E extends Comparable<E>>
implements OrderedStructure<kE> {
protected Vector<E> data;
protected Comparator<E> comp;

public OrderedVector() {
data = new Vector<E>();
this.comp = new NaturalComparator<E>();

}

public OrderedVector (Comparator<kE> comp) {
data = new Vector<E>();
this.comp = comp;

}

protected int locate(E value) {
//use modified binary search to find position of value
//return position
//use comp.compare instead of compareTo

}

//rest stays same..



A Confession

The previous slide demonstrated how to add
flexibility to the OrderedVector class using
Comparators

StructureS did not implement this use of
Comparators for the OrderedVector class!

But did implement it for OrderedList!

Let's take a look....



Ordered Lists

Similar to OrderedVector

Can’t efficiently use SinglyLinkedList like
OrderedVector used Vector

* Most methods would traverse list multiple times

So, we just build a SinglyLinkedList-like
structure

add, contains, remove runtime?
e All O(n) : Must traverse list

Let's look at a few details....



OrderedList Methods

public class OrderedList<E extends Comparable<E>>

extends AbstractStructure<E> implements
OrderedStructure<iE> {

protected Node<E> data; // smallest value
protected int count; // size of list

protected Comparator<? super E> ordering;

public OrderedList() {
this(new NaturalComparator<kE>());

}

public OrderedList (Comparator<? super E> ordering) {
this.ordering = ordering;
clear();



OrderedList Methods

public void clear() {
data = null;
count = 0;

}

public boolean contains(E value) {
Node<E> finger = data; // target

while ((finger != null) &&
ordering.compare(finger.value(),value)<0)

finger = finger.next();

return finger!=null && value.equals(finger.value());



What Could Go Wrong!

OrderedVector

—

/

Students

Duane

4.0

Jeannie

3.5

Bill

3.3

e Students compared to
each other by GPA

* Suppose next
semester | geta 3.7
and Jeannie gets a 3.3



What's the problem!?

We have to recompute GPAs each semester
What happens if the values are allowed to change?

We may need to resort vector

e But since this isn’t part of the interface, it may be forgotten
Options:

* Avoid changing values in OrderedStructures

* Incorporate an update method that repositions element

* Incorporate a resort method

e This invites adding a “setComparator” method....

e Always update a value by removing and re-adding



Bonus : Type Safety & Generics

Question: Since String extends Object, does List<String> extend
List<Object>?

* l.e., can | say List<Object> = new List<String>()?

No. It would compromise the type system:

List<String> slist = new List<String>();

List<Object> olist = slist; // If this were possible
olist.add(new Object()); // This would be bad!

It generates a compiler error.
On the other hand...

String[] sa = {“1I”, *“love”, *java”, “!"};
Object[] oa = sa;

oa[l] = new Object()); // This would be bad!
...actually compiles

e But causes a run-time error!



Summary & Observations

* Imposing order on the elements in a structure can
improve performance of order-related queries.

e A sorted Vector improves search from @(n) to O(log n)
e Didn't improve search for linked list, but...
* Consider the Rank Problem: Given a collection of

comparable objects, find the k" smallest (or k" largest)
object in the collection.

* How would you do this with an ordered linked list?

* How would you do this with an unordered linked list?!
e Using Comparators allows ordered structures to

order the same data in a variety of ways.

e Especially if the Comparator can be replaced!



