CSCI 136: Data Structures &
Advanced Programming

Today: Object Oriented
Programming & Java

Today s Qutline

* Why is |36 taught in Java?

Today s Qutline

* Why is |36 taught in Java?

e Object Oriented Programming (OOP)!
* What is an object?
e OORP as a (powerful) way to organize your code

* Discuss select Java features that support OOP
e Classes & Objects

e Access Maodifiers

WHY JAVA?

Java is a compiled language

* Java code is sent to a compiler that statically
verifies the code follows the language’s rules

$ javac HelloWorld.java
$ 1s

HelloWorld. java
HelloWorld.class

* The resulting .class file can then be run by the
Java Virtual Machine (JVM)

$ java HelloWorld
Hello World!

e Question: Why is this good!?

Java is a compiled language

* Why is this good? (many reasons...)

* We can detect certain errors before they happen

e Can then ask the compiler for more information
(or to run again with different settings)

e Compile-time errors vs. Run-time errors

e Efficient representation of code

e Compiler can apply many complex optimizations without
much additional work from programmers

e Compiler does work once, but program may be run many
times

Java is a popular language

Ranking Programming Language Percentage (Change) Trend
1 JavaScript 18.772% (-1.494%)
2 Python 16.488% (-1.089%)
3 Java 11.546% (+1.369%)
4 Go 8.134% (-0.153%)
5 C++ 7.000% (+0.143%)
6 Ruby 6.948% (+0.146%)
7 TypeScript 6.655% (+0.406%)
8 PHP 5.574% (+0.295%)
9 C# 3.673% (+0.044%)
10 C 3.127% (+0.175%)

Github pull requests by language in Q4 2020

Src: https://madnight.github.io/githut/#/pull_requests/2020/4

Java is Object-Oriented

Java is Object-Oriented

e Language often influences the way we
approach/think about a problem

Java is Object-Oriented

e Language often influences the way we
approach/think about a problem

e Object-oriented programming is how we
will design our programs in this course
e OOP may seem unnatural at first, but try to

think in the OOP mindset and give it a chance;
it'll help to build intuition for its benefits and

limits

OOP: OBJECT ORIENTED
PROGRAMMING

What is an object?

e First, let’s recall functions

e Functions: a way to group together code that performs a
single task

Why use functions!?

* Organization
* Avoiding Repetition

* Encapsulation

String[] studentNames = {"Bill", "Sam",

char[] studentGrades = {'B', 'C', 'A',
String course = “CS136”;

for(int i1 =0; 1 < studentGrades.length;

for(int j = 1; J > 0 &&

"Cathy", "DeV" } ,.

A}

i++) |

studentGrades[j-1] > studentGrades[j]; Jj—-) {
String tempName = studentNames[]];

int tempGrade = studentGrades|[]];

studentNames[]j] = studentNames[]j-1];
studentGrades[]j] = studentGrades|[j-1];
studentNames[]j-1] = tempName;
studentGrades[]j-1] = tempGrade;

}

System.out.println (course);
for(int 1 = 0; i < studentNames.length;
System.out.println (studentNames[1]

i++)

+ ": " + studentGrades[i]);

String[] studentNames = {"Bill", "Sam", "Cathy",
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade (studentNames, studentGrades) ;
System.out.println (course) ;
printStudents (studentNames, studentGrades);

w DeV" } ;

Why use functions!?

e Organization

* Easier to read, easier to change

* Avoiding Repetition

e Can sort other arrays; or can sort multiple times

* Encapsulation

e Functions only affect variables that are arguments to
the function

Generalizing to Obijects
Obijects group together functions and data
All the benefits of functions
Same benefits apply to data as well!

A program can be built up by defining a number of
functions that interact with each other.

In Java, we build up our programs by defining a
number of objects that interact with each other

Classes, objects, and interfaces

Classes, objects, and interfaces

e Classes let us define our own types.

Classes, objects, and interfaces

e Classes let us define our own types.
e Objects are instances of class types

Classes, objects, and interfaces

e Classes let us define our own types.
e Objects are instances of class types

e Example: Think about the abstract concept of a car. Here are three
instances of a car:

iy, T R,

Classes, objects, and interfaces

Classes let us define our own types.
Obijects are instances of class types

Example: Think about the abstract concept of a car. Here are three
instances of a car:

Conceptually, all these cars have the same high-level interface (wheels, doors, color, transmission,
top speed, etc.) but individual cars differ in their details

* In OOP paradigm, we could define a car class, and then instantiate that class to create individual

car objects. 6

Object-Oriented Programming

Object-Oriented Programming

e Objects are building blocks of Java software

Object-Oriented Programming

e Objects are building blocks of Java software

* Programs are collections of interacting objects
e Cooperate to complete tasks
» Represent the “state” of the program

e Communicate by sending messages to each other
* Through method invocation

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:

* Physical items — cars, dice, book, students

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:
* Physical items — cars, dice, book, students
e Concepts — time, relationships

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:
* Physical items — cars, dice, book, students
e Concepts — time, relationships
* Processing — sort, simulation, gameplay

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:

* Physical items — cars, dice, book, students
e Concepts — time, relationships
* Processing — sort, simulation, gameplay

e Objects contain:

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:

* Physical items — cars, dice, book, students
e Concepts — time, relationships
* Processing — sort, simulation, gameplay
e Objects contain:
e State (instance variables)

Object-Oriented Programming

* With enough creativity, objects can model
almost anything:

* Physical items — cars, dice, book, students
e Concepts — time, relationships
* Processing — sort, simulation, gameplay
e Objects contain:
e State (instance variables)
e Functionality (methods)

Object Support in Java

* Java supports the creation of programmer-
defined types called class types

Object Support in Java

* Java supports the creation of programmer-
defined types called class types

* A class declaration defines data components
and functionality of a type of object

Object Support in Java

* Java supports the creation of programmer-
defined types called class types

* A class declaration defines data components
and functionality of a type of object

e Data components: instance variable declarations

Object Support in Java

* Java supports the creation of programmer-
defined types called class types

* A class declaration defines data components
and functionality of a type of object
e Data components: instance variable declarations

e Functionality: method declarations

 Constructor(s): special method(s) that describe the steps
needed to create an object (instance) of this class type

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade (studentNames, studentGrades) ;
System.out.println (course) ;
printStudents (studentNames, studentGrades);

20

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};

char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade (studentNames, studentGrades) ;
System.out.println (course) ;
printStudents (studentNames, studentGrades);

* It’s very dangerous to store data this way

20

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade (studentNames, studentGrades) ;
System.out.println (course) ;
printStudents (studentNames, studentGrades);

* It’s very dangerous to store data this way
* We want to store all student data in one
place

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade (studentNames, studentGrades) ;
System.out.println (course) ;
printStudents (studentNames, studentGrades);

* It’s very dangerous to store data this way

* We want to store all student data in one
place

e How! Define a Student class

Two tasks towards OOP

e Define a Student class:
e Tell Java what a Student is
* What data does a Student have!?
* What methods do we want to associate with each Student!?

* How do we want to access Student data?

e Create a Student object

e Then we can sort, print, etc., these objects

2|

A Simple Class

Task: Define a type that stores information
about a student: name, age, and a single grade.

22

A Simple Class

Task: Define a type that stores information

about a student: name, age, and a single grade.

* Java class types should always (always) start
with a capital letter

* Not enforced. (But really always do this)

22

A Simple Class

Task: Define a type that stores information
about a student: name, age, and a single grade.

* Java class types should always (always) start
with a capital letter
* Not enforced. (But really always do this)
* Java class types must be stored in a java file of
the same name
* In this case: Student.java
e The compiler will check this!

22

A Simple Class

Task: Define a type that stores information
about a student: name, age, and a single grade.

23

A Simple Class

Task: Define a type that stores information

about a student: name, age, and a single grade.

* Declare a Java class called Student with
data components (fields/instance variables):

String name;
int age;
char grade;

23

A Simple Class

Task: Define a type that stores information

about a student: name, age, and a single grade.

* Declare a Java class called Student with
data components (fields/instance variables):

String name;
int age;
char grade;

e and methods for accessing/modifying fields:
e “Getters”’: getName, getAge, getGrade
e “Setters’: setAge, setGrade

23

A Simple Class

Task: Define a type that stores information
about a student: name, age, and a single grade.

* Declare a Java class called Student with
data components (fields/instance variables):

String name;
int age;
char grade;

e and methods for accessing/modifying fields:
e “Getters”’: getName, getAge, getGrade
e “Setters’: setAge, setGrade

 Declare a constructor, also called Student

23

class Student {

24

class Student {
// instance variables

int age;
String name;
char grade;

24

class Student {

// instance variables

int age;

String name;

char grade;

// A constructor
Student (int theAge, String theName,

char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

// Methods for accessing/modifying

// ...see next slide...

objects

24

} // end of class declaration from previous slide

25

int getAge() { return age; }
String getName() { return name; }
char getGrade() { return grade; }
void setAge(int theAge) {

age = theAge;

void setGrade(char theGrade) {
grade = theGrade;

}

} // end of class declaration from previous slide

25

Constructors

Used to create (“‘construct”) new objects of a
certain class type

Always have same name as the class
Never have a return type

Can have any arguments you want

e Can have multiple constructors with different
arguments

26

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state? instance variables

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state? instance variables

* Frequently constructors are short simple methods

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state! instance variables
* Frequently constructors are short simple methods

* More complex constructors will typically use
helper methods. Why!?

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state! instance variables
* Frequently constructors are short simple methods

* More complex constructors will typically use
helper methods. Why!?

* A class may have more than one constructor!

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state! instance variables
* Frequently constructors are short simple methods
* More complex constructors will typically use
helper methods. Why?

* A class may have more than one constructor!

* Your constructors can call other constructors or
helper methods in order to reuse code

27

Constructors

Principle: Use constructors to initialize the state of an
object, nothing more.

* What is state! instance variables
* Frequently constructors are short simple methods

* More complex constructors will typically use
helper methods. Why!?
* A class may have more than one constructor!

* Your constructors can call other constructors or
helper methods in order to reuse code

* Never copy/paste code!!!

27

Creating Objects

* “new” keyword

e Tells Java to create a new object of a given class
type

e Arguments are the same as the constructor
arguments

Student sl = new Student(32, “Sam”
‘AT

28

Creating Objects

Student sl = new Student (32, “Sam”,
When running this line, Java will:

e Make enough space for a new Student

e Call the constructor we wrote:

Student (int theAge, String theName,
char theGrade) {

age = theAge;
name = theName;

grade = theGrade;

‘A ;

29

Using Objects
e Use a period to accesses a variable or method of an object

Student sl = new Student (32, “Sam”, ‘A’);
//Output: Sam
System.out.println(sl.getName()) ;
//Output: Sam
System.out.println(sl.name);

sl.name = “Sam M.”;

30

Using Objects
e Use a period to accesses a variable or method of an object

Student sl = new Student (32, “Sam”, ‘A’);
//Output: Sam
System.out.println(sl.getName()) ;
//Output: Sam
System.out.println(sl.name);

sl.name = “Sam M.”;

Don’t do this! Use
getter/setter methods

30

IMPROVING THE STUDENT CLASS

31

Access Modifiers

 public, private, and protected are called
access modifiers

32

Access Modifiers

 public, private, and protected are called
access modifiers

e They control access of other classes to instance variables and
methods of a given class
* public : Accessible to all other classes
e private : Accessible only to the class declaring it
* protected : Accessible to the class declaring it and its subclasses

32

Access Modifiers

 public, private, and protected are called
access modifiers

e They control access of other classes to instance variables and
methods of a given class
* public : Accessible to all other classes
* private : Accessible only to the class declaring it
* protected : Accessible to the class declaring it and its subclasses

e Data-Hiding Principle (encapsulation)
e Make instance variables private
e Use public methods to access/modify object data

32

public class Student {
// instance variables
private int age;
private String name;

private char grade;

// A constructor
public Student(int theAge, String theName,
char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

// Methods for accessing/modifying objects
// ...see next slide...

33

public int getAge() { return age; }
public String getName() { return name; }
public char getGrade() { return grade; }
public void setAge(int theAge) {

age = theAge;

public void setGrade(char theGrade) {
grade = theGrade;

}

} // end of class declaration from previous slide

34

TESTING THE STUDENT CLASS

35

Always test your code!

* You should never write more than 10-20 lines without testing
e 4-5 is better

e Let’s test out our Student class
e See some examples of making objects

e How classes interact

36

Testing the Student Class

37

Testing the Student Class

public class TestStudent {

public static void main(String[] args) {
Student a = new Student (18, ”Sam", 'B');
Student b = new Student(19, ”Bill L", 'A');
// Some code to nicely print student details
System.out.println(a.getName() + ", " +
a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +
b.getAge() + ", " + b.getGrade());

38

Worth Noting

* We can create as many Student objects as we
need, including arrays of Students

39

Worth Noting

* We can create as many Student objects as we
need, including arrays of Students

Student[] section = new Student[3];

section[0] = new Student (18, "Huey", 'A’);
section[1l] = new Student (20, "Dewey", 'B’');
section[2] = new Student(21, "Louie", 'A');

39

Worth Noting

* We can create as many Student objects as we
need, including arrays of Students

Student[] section = new Student[3];

section[0] = new Student (18, "Huey", 'A’);
section[1l] = new Student (20, "Dewey", 'B’');
section[2] = new Student(21, "Louie", 'A');

* Fields are private: only accessible in Student class
* Methods are public: accessible to other classes

39

Worth Noting

* We can create as many Student objects as we
need, including arrays of Students

Student[] section = new Student[3];

section[0] = new Student (18, "Huey", 'A’);
section[1l] = new Student (20, "Dewey", 'B’');
section[2] = new Student(21, "Louie", 'A');

39

Student[] studentArray = new Student[4];

studentArray[0] = new Student (18, "Bill", 'B');
studentArray[l] = new Student (19, "Sam", 'C');
studentArray[2] = new Student (24, "Cathy", 'A');
studentArray[3] = new Student (20, "Dev", 'A’);

//sort students
for(int i =0; 1 < studentArray.length; i++) {
for(int 7 = i; J > 0 && studentArray[]j-1].getGrade ()
> studentArray[]].getGrade(); J--){
Student temp = studentArrayl[]];
studentArray[j] = studentArray[j-1];
studentArray[j-1] = temp;

}
//print students
for(int i = 0; i1 < studentArray.length; i++)
System.out.println (studentArray[i] .getName () + ": "
studentArray[i] .getGrade());

40

SOME MORE DETAILS

41

Testing the Student Class

public class TestStudent {

public static void main(String[] args) {
Student a = new Student (18, ”Sam", 'B');
Student b = new Student(19, ”Bill L", 'A');
// Some code to nicely print student details
System.out.println(a.getName() + ", " +
a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +
b.getAge() + ", " + b.getGrade());
// Ugly printing (calls default toString())
System.out.println(a);
System.out.println(b);

42

“Special” Methods

e Everything “inherits” from the class java.lang.Object

* In particular, we’ll take advantage of a few methods repeatedly
in this course:
e String toString()
* boolean equals(Object other)
e int hashCode()

e Today, let’s just look at toString()

43

More Gotchas

public class Student {
// instance variables
private int age;
private String name;

private char grade;

// A constructor
public Student(int age, String name,
char grade) {
// What would age, name, grade

// refer to here...?

44

For clarity, can use ‘this

’

public class Student {

// instance variables

private int age;

private String name;

private char grade;

// A constructor

public Student(int age, String name,

}

char grade) {
this.age = age;
this.name = name;
this.grade = grade;

public String getName() { return this

.name;

}

45

INTERFACES: A WAY TO
STANDARDIZE BEHAVIOR

Keeping track of a course

Let’s say we want to keep track of a course
Course consists of Students and TeachingAssistants

Students have:

* int age, String name, char grade

TeachingAssistants have:

* int age, String name, int numHours

88

public class Student {
// instance variables
private int age;
private String name;

private char grade;

// A constructor
public Student(int theAge, String theName,
char theGrade) {
age = theAge;
name = theName;
grade = theGrade;

// Methods for accessing/modifying objects
// ...see next slide...

33

public int getAge() { return age; }
public String getName() { return name; }
public char getGrade() { return grade; }
public void setAge(int theAge) {

age = theAge;

public void setGrade(char theGrade) {
grade = theGrade;

}

} // end of class declaration from previous slide

34

public class TeachingAssistant {
// instance variables
private int age;
private String name;

private int numHours;

// A constructor

public TeachingAssistant(int theAge, String
theName, int theNumHours) {

age = theAge;
name = theName;

numHours = theNumHours;

// Methods for accessing/modifying objects

// ...see next slide... 33

public int getAge() { return age; }

public String getName() { return name; }
public int getNumHours() { return numHours;
public void setAge(int theAge) {

age = theAge;

} // end of class declaration from previous slide

}

34

A Simple Task

e Let’s say | want to go through all class participants
(both students and TAs), print out everyone who
has age = 20

* How can | do that?

* Loop through students, check if age is 20, print if so
e Do the same for Tas

e Let’s try it

93

Redundancy!

* The loops are exactly the same

94

Redundancy!

* The loops are exactly the same

e All we'’re doing is getName() and getAge().
Why can’t we do that in one loop!?

95

Redundancy!

* The loops are exactly the same

e All we'’re doing is getName() and getAge().
Why can’t we do that in one loop!?

* Need a way to put both types of objects in one
array. All we care about is having a getName()
and getAge() method

e Create an array of “things that have a getName()
and getAge() method”

96

Interfaces

Interfaces

* We've used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract

Interfaces

* We've used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract

e Defines methods (name, parameters, return types)
that a class must implement

e Kind of like a “class recipe”

Interfaces

* We've used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract
e Defines methods (name, parameters, return types)

that a class must implement
e Kind of like a “class recipe”
e Multiple classes can implement the same interface,

and we are guaranteed that they all implement
the required methods

How can we use it here?

Students and TeachingAssistants both are
people—so they both have getName() and
getAge() methods

Let’s write a Person interface; a contract for
these methods

Then, let’s tell Java that Students and
TeachingAssistants both implement Person

Try it out, and see what javac says

101

Removing redundancy

* Let’s refactor our code to have one loop

* What is our array type!
e Our array stores things that have getName() and getAge
e So...it stores People!
° Let’s try it

102

Interfaces

* A class can implement an interface by providing
code for each required method.

Interfaces

* A class can implement an interface by providing
code for each required method.

* If we have code that depends only on the
functionality described in the interface, that
code can work for objects of any class that
implements the interface!

e Recall our eternal goal: write code exactly once

e If the methods aren’t all implemented, Java
gives an error

105

