
CSCI 136: Data Structures &
Advanced Programming

Today: Object Oriented
Programming & Java

Today’s Outline

• Why is 136 taught in Java?

2

Today’s Outline

• Why is 136 taught in Java?

• Object Oriented Programming (OOP)!
• What is an object?
• OOP as a (powerful) way to organize your code

• Discuss select Java features that support OOP
• Classes & Objects

• Access Modifiers

3

WHY JAVA?

4

Java is a compiled language

• Java code is sent to a compiler that statically
verifies the code follows the language’s rules
$ javac HelloWorld.java
$ ls
HelloWorld.java
HelloWorld.class

• The resulting .class file can then be run by the
Java Virtual Machine (JVM)
$ java HelloWorld
Hello World!

• Question: Why is this good? 5

Java is a compiled language

• Why is this good? (many reasons…)

• We can detect certain errors before they happen
• Can then ask the compiler for more information

(or to run again with different settings)

• Compile-time errors vs. Run-time errors

• Efficient representation of code
• Compiler can apply many complex optimizations without

much additional work from programmers
• Compiler does work once, but program may be run many

times
6

Java is a popular language

Github pull requests by language in Q4 2020

Src: https://madnight.github.io/githut/#/pull_requests/2020/4 7

Java is Object-Oriented

8

Java is Object-Oriented

• Language often influences the way we
approach/think about a problem

8

Java is Object-Oriented

• Language often influences the way we
approach/think about a problem

• Object-oriented programming is how we
will design our programs in this course
• OOP may seem unnatural at first, but try to

think in the OOP mindset and give it a chance;
it’ll help to build intuition for its benefits and
limits

8

OOP: OBJECT ORIENTED
PROGRAMMING

9

What is an object?

• First, let’s recall functions

• Functions: a way to group together code that performs a
single task

Why use functions?

• Organization

• Avoiding Repetition

• Encapsulation

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;
for(int i =0; i < studentGrades.length; i++) {

for(int j = i; j > 0 &&
studentGrades[j-1] > studentGrades[j]; j--){

String tempName = studentNames[j];
int tempGrade = studentGrades[j];
studentNames[j] = studentNames[j-1];

studentGrades[j] = studentGrades[j-1];
studentNames[j-1] = tempName;
studentGrades[j-1] = tempGrade;

}

}
System.out.println(course);
for(int i = 0; i < studentNames.length; i++)

System.out.println(studentNames[i] + ": " + studentGrades[i]);

12

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};
char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade(studentNames, studentGrades);
System.out.println(course);
printStudents(studentNames, studentGrades);

13

Why use functions?

• Organization
• Easier to read, easier to change

• Avoiding Repetition
• Can sort other arrays; or can sort multiple times

• Encapsulation
• Functions only affect variables that are arguments to

the function

Generalizing to Objects

• Objects group together functions and data

• All the benefits of functions

• Same benefits apply to data as well!

• A program can be built up by defining a number of
functions that interact with each other.

• In Java, we build up our programs by defining a
number of objects that interact with each other

Classes, objects, and interfaces

16

Classes, objects, and interfaces

• Classes let us define our own types.

16

Classes, objects, and interfaces

• Classes let us define our own types.
• Objects are instances of class types

16

Classes, objects, and interfaces

• Classes let us define our own types.
• Objects are instances of class types

• Example: Think about the abstract concept of a car. Here are three
instances of a car:

16

Classes, objects, and interfaces

• Classes let us define our own types.
• Objects are instances of class types

• Example: Think about the abstract concept of a car. Here are three
instances of a car:

• Conceptually, all these cars have the same high-level interface (wheels, doors, color, transmission,
top speed, etc.) but individual cars differ in their details
• In OOP paradigm, we could define a car class, and then instantiate that class to create individual

car objects.
16

17

Object-Oriented Programming

17

Object-Oriented Programming

• Objects are building blocks of Java software

17

Object-Oriented Programming

• Objects are building blocks of Java software

• Programs are collections of interacting objects
• Cooperate to complete tasks

• Represent the “state” of the program
• Communicate by sending messages to each other

• Through method invocation

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students
• Concepts – time, relationships

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students
• Concepts – time, relationships
• Processing – sort, simulation, gameplay

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students
• Concepts – time, relationships
• Processing – sort, simulation, gameplay

• Objects contain:

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students
• Concepts – time, relationships
• Processing – sort, simulation, gameplay

• Objects contain:
• State (instance variables)

18

Object-Oriented Programming

• With enough creativity, objects can model
almost anything:
• Physical items – cars, dice, book, students
• Concepts – time, relationships
• Processing – sort, simulation, gameplay

• Objects contain:
• State (instance variables)
• Functionality (methods)

19

Object Support in Java
• Java supports the creation of programmer-

defined types called class types

19

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object

19

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable declarations

19

Object Support in Java
• Java supports the creation of programmer-

defined types called class types
• A class declaration defines data components

and functionality of a type of object
• Data components: instance variable declarations
• Functionality: method declarations

• Constructor(s): special method(s) that describe the steps
needed to create an object (instance) of this class type

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};

char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade(studentNames, studentGrades);
System.out.println(course);
printStudents(studentNames, studentGrades);

20

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};

char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade(studentNames, studentGrades);
System.out.println(course);
printStudents(studentNames, studentGrades);

20

• It’s very dangerous to store data this way

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};

char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade(studentNames, studentGrades);
System.out.println(course);
printStudents(studentNames, studentGrades);

20

• It’s very dangerous to store data this way
• We want to store all student data in one

place

String[] studentNames = {"Bill", "Sam", "Cathy", "Dev"};

char[] studentGrades = {'B', 'C', 'A', 'A'};
String course = “CS136”;

sortStudentsByGrade(studentNames, studentGrades);
System.out.println(course);
printStudents(studentNames, studentGrades);

20

• It’s very dangerous to store data this way
• We want to store all student data in one

place
• How? Define a Student class

Two tasks towards OOP

• Define a Student class:
• Tell Java what a Student is
• What data does a Student have?
• What methods do we want to associate with each Student?

• How do we want to access Student data?

• Create a Student object
• Then we can sort, print, etc., these objects

21

22

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.

22

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Java class types should always (always) start

with a capital letter
• Not enforced. (But really always do this)

22

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Java class types should always (always) start

with a capital letter
• Not enforced. (But really always do this)

• Java class types must be stored in a java file of
the same name
• In this case: Student.java
• The compiler will check this!

23

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.

23

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Declare a Java class called Student with

data components (fields/instance variables):
String name;
int age;
char grade;

23

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Declare a Java class called Student with

data components (fields/instance variables):
String name;
int age;
char grade;

• and methods for accessing/modifying fields:
• “Getters”: getName, getAge, getGrade
• “Setters”: setAge, setGrade

23

A Simple Class
Task: Define a type that stores information
about a student: name, age, and a single grade.
• Declare a Java class called Student with

data components (fields/instance variables):
String name;
int age;
char grade;

• and methods for accessing/modifying fields:
• “Getters”: getName, getAge, getGrade
• “Setters”: setAge, setGrade

• Declare a constructor, also called Student

class Student {

24

class Student {
// instance variables
int age;
String name;
char grade;

24

class Student {
// instance variables
int age;
String name;
char grade;

// A constructor
Student(int theAge, String theName,

char theGrade) {
age = theAge;

name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects

// ...see next slide...
24

} // end of class declaration from previous slide

25

int getAge() { return age; }

String getName() { return name; }

char getGrade() { return grade; }

void setAge(int theAge) {
age = theAge;

}

void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration from previous slide

25

Constructors
• Used to create (“construct”) new objects of a

certain class type

• Always have same name as the class

• Never have a return type
• Can have any arguments you want
• Can have multiple constructors with different

arguments

26

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods
• More complex constructors will typically use

helper methods. Why?

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods
• More complex constructors will typically use

helper methods. Why?
• A class may have more than one constructor!

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods
• More complex constructors will typically use

helper methods. Why?
• A class may have more than one constructor!
• Your constructors can call other constructors or

helper methods in order to reuse code

27

Constructors
Principle: Use constructors to initialize the state of an
object, nothing more.
• What is state? instance variables

• Frequently constructors are short simple methods
• More complex constructors will typically use

helper methods. Why?
• A class may have more than one constructor!
• Your constructors can call other constructors or

helper methods in order to reuse code
• Never copy/paste code!!!

27

Creating Objects

• “new” keyword

• Tells Java to create a new object of a given class
type

• Arguments are the same as the constructor
arguments

Student s1 = new Student(32, “Sam”,
‘A’);

28

Creating Objects

Student s1 = new Student(32, “Sam”, ‘A’);

When running this line, Java will:
• Make enough space for a new Student

• Call the constructor we wrote:

Student(int theAge, String theName,
char theGrade) {

age = theAge;

name = theName;

grade = theGrade;

}
29

Using Objects

• Use a period to accesses a variable or method of an object

Student s1 = new Student(32, “Sam”, ‘A’);

//Output: Sam

System.out.println(s1.getName());

//Output: Sam

System.out.println(s1.name);

s1.name = “Sam M.”;

30

Using Objects

• Use a period to accesses a variable or method of an object

Student s1 = new Student(32, “Sam”, ‘A’);

//Output: Sam

System.out.println(s1.getName());

//Output: Sam

System.out.println(s1.name);

s1.name = “Sam M.”;

30

Don’t do this! Use
getter/setter methods

IMPROVING THE STUDENT CLASS

31

Access Modifiers

• public, private, and protected are called
access modifiers

32

Access Modifiers

• public, private, and protected are called
access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes

• private : Accessible only to the class declaring it

• protected : Accessible to the class declaring it and its subclasses

32

Access Modifiers

• public, private, and protected are called
access modifiers
• They control access of other classes to instance variables and

methods of a given class
• public : Accessible to all other classes

• private : Accessible only to the class declaring it

• protected : Accessible to the class declaring it and its subclasses

• Data-Hiding Principle (encapsulation)
• Make instance variables private
• Use public methods to access/modify object data

32

public class Student {
// instance variables
private int age;
private String name;

private char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {

age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide... 33

public int getAge() { return age; }

public String getName() { return name; }

public char getGrade() { return grade; }

public void setAge(int theAge) {
age = theAge;

}

public void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration from previous slide

34

TESTING THE STUDENT CLASS

35

Always test your code!

• You should never write more than 10-20 lines without testing

• 4-5 is better

• Let’s test out our Student class
• See some examples of making objects
• How classes interact

36

Testing the Student Class

37

Testing the Student Class

public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, ”Sam", 'B');

Student b = new Student(19, ”Bill L", 'A');
// Some code to nicely print student details
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());
}

}

38

Worth Noting
• We can create as many Student objects as we

need, including arrays of Students

39

Worth Noting
• We can create as many Student objects as we

need, including arrays of Students
Student[] section = new Student[3];
section[0] = new Student(18, ”Huey", 'A’);

section[1] = new Student(20, ”Dewey", 'B’);

section[2] = new Student(21, ”Louie", 'A');

39

Worth Noting
• We can create as many Student objects as we

need, including arrays of Students
Student[] section = new Student[3];
section[0] = new Student(18, ”Huey", 'A’);

section[1] = new Student(20, ”Dewey", 'B’);

section[2] = new Student(21, ”Louie", 'A');

• Fields are private: only accessible in Student class
• Methods are public: accessible to other classes

39

Worth Noting
• We can create as many Student objects as we

need, including arrays of Students
Student[] section = new Student[3];
section[0] = new Student(18, ”Huey", 'A’);

section[1] = new Student(20, ”Dewey", 'B’);

section[2] = new Student(21, ”Louie", 'A');

39

Student[] studentArray = new Student[4];
studentArray[0] = new Student(18, "Bill", 'B');
studentArray[1] = new Student(19, "Sam", 'C');
studentArray[2] = new Student(24, "Cathy", 'A');

studentArray[3] = new Student(20, "Dev", 'A’);

//sort students
for(int i =0; i < studentArray.length; i++) {
for(int j = i; j > 0 && studentArray[j-1].getGrade()

> studentArray[j].getGrade(); j--){
Student temp = studentArray[j];
studentArray[j] = studentArray[j-1];
studentArray[j-1] = temp;

}
}
//print students
for(int i = 0; i < studentArray.length; i++)
System.out.println(studentArray[i].getName() + ": " +

studentArray[i].getGrade()); 40

SOME MORE DETAILS

41

Testing the Student Class
public class TestStudent {

public static void main(String[] args) {
Student a = new Student(18, ”Sam", 'B');
Student b = new Student(19, ”Bill L", 'A');

// Some code to nicely print student details
System.out.println(a.getName() + ", " +

a.getAge() + ", " + a.getGrade());
System.out.println(b.getName() + ", " +

b.getAge() + ", " + b.getGrade());

// Ugly printing (calls default toString())
System.out.println(a);
System.out.println(b);

}
} 42

“Special” Methods

• Everything “inherits” from the class java.lang.Object

• In particular, we’ll take advantage of a few methods repeatedly
in this course:
• String toString()
• boolean equals(Object other)

• int hashCode()

• Today, let’s just look at toString()

43

public class Student {
// instance variables

private int age;
private String name;

private char grade;

// A constructor

public Student(int age, String name,
char grade) {

// What would age, name, grade

// refer to here...?
}

44

More Gotchas

public class Student {
// instance variables

private int age;
private String name;

private char grade;

// A constructor

public Student(int age, String name,
char grade) {

this.age = age;

this.name = name;
this.grade = grade;

}
public String getName() { return this.name; } 45

For clarity, can use ‘this’

INTERFACES: A WAY TO
STANDARDIZE BEHAVIOR

Keeping track of a course

• Let’s say we want to keep track of a course

• Course consists of Students and TeachingAssistants
• Students have:
• int age, String name, char grade

• TeachingAssistants have:
• int age, String name, int numHours

88

public class Student {
// instance variables
private int age;
private String name;

private char grade;

// A constructor
public Student(int theAge, String theName,

char theGrade) {

age = theAge;
name = theName;
grade = theGrade;

}

// Methods for accessing/modifying objects
// ...see next slide... 33

public int getAge() { return age; }

public String getName() { return name; }

public char getGrade() { return grade; }

public void setAge(int theAge) {
age = theAge;

}

public void setGrade(char theGrade) {
grade = theGrade;

}
} // end of class declaration from previous slide

34

public class TeachingAssistant {
// instance variables
private int age;
private String name;

private int numHours;

// A constructor
public TeachingAssistant(int theAge, String

theName, int theNumHours) {
age = theAge;

name = theName;
numHours = theNumHours;

}

// Methods for accessing/modifying objects

// ...see next slide...
33

public int getAge() { return age; }

public String getName() { return name; }

public int getNumHours() { return numHours; }

public void setAge(int theAge) {
age = theAge;

}

} // end of class declaration from previous slide

34

A Simple Task

• Let’s say I want to go through all class participants
(both students and TAs), print out everyone who
has age = 20

• How can I do that?
• Loop through students, check if age is 20, print if so
• Do the same for Tas

• Let’s try it

93

Redundancy!

• The loops are exactly the same

94

Redundancy!

• The loops are exactly the same

• All we’re doing is getName() and getAge().
Why can’t we do that in one loop?

95

Redundancy!

• The loops are exactly the same

• All we’re doing is getName() and getAge().
Why can’t we do that in one loop?

• Need a way to put both types of objects in one
array. All we care about is having a getName()
and getAge() method
• Create an array of “things that have a getName()

and getAge() method”

96

Interfaces

Interfaces

• We’ve used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract

Interfaces

• We’ve used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract
• Defines methods (name, parameters, return types)

that a class must implement
• Kind of like a “class recipe”

Interfaces

• We’ve used the term interface to colloquially
describe the way that we interact with objects,
but a Java interface is a contract
• Defines methods (name, parameters, return types)

that a class must implement
• Kind of like a “class recipe”

• Multiple classes can implement the same interface,
and we are guaranteed that they all implement
the required methods

How can we use it here?

• Students and TeachingAssistants both are
people—so they both have getName() and
getAge() methods

• Let’s write a Person interface; a contract for
these methods

• Then, let’s tell Java that Students and
TeachingAssistants both implement Person

• Try it out, and see what javac says

101

Removing redundancy

• Let’s refactor our code to have one loop

• What is our array type?
• Our array stores things that have getName() and getAge
• So…it stores People!
• Let’s try it

102

Interfaces

• A class can implement an interface by providing
code for each required method.

Interfaces

• A class can implement an interface by providing
code for each required method.

• If we have code that depends only on the
functionality described in the interface, that
code can work for objects of any class that
implements the interface!
• Recall our eternal goal: write code exactly once

• If the methods aren’t all implemented, Java
gives an error

105

