CSCI 136
Data Structures &
Advanced Programming

Introduction to Graphs

Graphs : Our Final Frontier

Graphs as Mathematical Models
e Basic Terminology

* Important Structural Features
Algorithms on Graphs

Graph Data Structures

e Undirected Graphs
e Directed Graphs

More Graph Algorithms

Basic Definitions & Concepts

An undirected graph A directed graph

Graphs Describe the World

Transportation Networks
Communication Networks
Molecular structures
Dependency structures
Scheduling

Matching

Graphics Modeling

— New York City Subway Diagram

Stations and connections ~ Subway Services
swayssips. § 7 Avenue Local

7 Avenue Express

ook sty
e Loxigton Avenue Eprss
= Loingion Avnue Exrss
Harlem ‘service in one direction only . Lexington Avenue Local
e roreaularsenice © 42 Street-Flushing Local
e B o e Expess
S Ao Lo
i ik Ay, oot axion vt & Juserua Local
e e O e s
- or i conaction T O 5 Avonue Expross
Vartem e Wheelchai sccess & @ 6 Avenue Local
s senn : 3 Shemeioe
© Crosstown Local
r———
sseny s it} Nassau Stroet Expross
s o R TP ——
—— i N N Broadway Express
G Eroaovay Exorss
s = R Broadway Local
oo : .. W Broadwiay Local
- w0
. Manhattan o
o j s [— gl SIR Staten Isiand Railway
- | LR -l —"
5 &
e —— c
., P
) . - i (E——
B . ° s

udson Rive

(= o § [— R 4 4 st v

Now Lo r— o
e i || | oy PFrvnpna e Brnerse
Pty — -

- —— e

New York Harbor

Staten Island

Atlantic Ocean

Nodes = subway stops; Edges = track between stops

Seattleé.

Portland'j

SF |

> ,, \.———-—-——\S&I‘

_ Dallas

Nodes = cities; Edges = rail lines connecting cities

Portland Seattle Boston

r - :
Denver Chicagc
SF ‘ -
NY
LA ©® ® :
Dallas Atlanta

Note: Connections in graph matter, not precise locations of nodes

Internet (~1972)

SRI

STAN

UCLA

Internet (~1998)

OAD

Word Game

CORD

WOLD

WARD

A

ony—er

CS Pre-requisite Structure (subset)

Al

Algorithms

/.

»

Discrete Math

/ Data Structures

Organization

el Graphics

Theory of comp. » Compilers

Programming Languages

Java
Operating Systems

Nodes = courses; Edges = prerequisites ***

Wire-Frame Models

12

Priority Queue

Basic Definitions & Concepts

Definition:

An undirected graph G = (V, E)
consists of two sets

 V :the vertices of G
* E:the edges of G

Each edge e in E is defined by a
set of two vertices: its incident
vertices

* We write e = {u,v} and say
that u and v are adjacent

Walking Around A Graph

Defn: A walk fromutovina
graph G = (V,E) is an alternating
sequence of vertices and edges

u-= Vos €15 V5 €9y eee s Vie s €10 Vi -V

such that each e, = {v., , v} for
i=1,..,k

e Note: A walk starts and ends
with a vertex

B—A—G—F—C—B—A—H

Walking Around A Graph

Def'n: A path from u to vina
graph G = (V,E) is a walk that
does not use any edge more
than once

Defn: A simple path is a path
that does not use any vertex
more than once

More Definitions : Walking In Circles

* A closed walk in a graph G = (V,E) is a walk

Vo» €15 Vir €95 V25 e s Vi|s €1s Vi
such that each v, = v,

* A circuit is a path where v, = v,
*No repeated edges

* A cycle is a simple path where v, = v,
*No repeated vertices (uhm, except for v,!)

* The length of any of these is the number of
edges in the sequence

Little Tiny Theorems

e |f there is a walk from u to v, then there is a
walk from v to u.

e |f there is a walk from u to v, then there is a
path from u to v (and from v to u)

* If there is a path from u to v, then there is a
simple path from u to v (and v to u)

* Every circuit through v contains a cycle through v

* Not every closed walk through v contains a cycle
through v! [Try to find an example!]

Little Tiny Theorems

If there is a walk from u to v, then there is a walk
from v to u.

Proof

* A walk from u to v is a sequence an alternating
sequence of vertices and edges

u — VO, el, VI’ e2, eoe 9 Vk_l’ ek’ Vk — V
e such thateache ={v.,,v}fori=1, ..,k
e Butthenv=v,e,Vv.,€..>V,€,Vg=Uisa

walk from v to u.

20

Little Tiny Theorems

If there is a path from u to v, then there is a simple path
from u to v.

|dea:

21

Little Tiny Theorems

Proof:

Let u =vg, €, V|, € -, Vi|» € Vi = V be a path from u
to v (no edge appears twice)

Suppose some v; appears twice: that is, for some j > |,

v,=v. Then ey ={v;, vy }and g ={v,, v}
Butv, = v, so e = {v,, v} and so we can remove
ei+|’ Vi+|’ ei+|’ cee vj-|’ ej

from the original path obtaining the shorter path

u-= Yoy €15 Vs <o s Vs €y Vi — Vj, ej+|, Vj, ceey €1y Vi -V
Repeat until no duplicate vertices remain.

22

Another Useful Graph Fact

If e = {u,v} we say e is incident to u (and to v)

The degree of v is the number of edges
incident to v

* Denoted by deg(v)
Thm: For any graph G = (V,E) :) deg(v)=21E|

vevV

where |E| is the number of edges in G

Proof Hint: Induction on |E|: How does
removing an edge change the equation!?

e Or: Count pairs (v,e) where v is incident with e

23

Reachability and Connectedness

Def'n: A vertex v in G is reachable from a
vertex u in G if there is a path fromu to v

Note: v is reachable from u if and only if u is
reachable from v

Def’n: An undirected graph G is connected if
for every pair of vertices u, vin G, v is
reachable from u (and, of course, u from v)

The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

24

Reachability and Connectedness

* 3 components

e A/B,C,D,E, F G, Hare all reachable from
one another

e Asarel,), K, L

* M can reach only itself

25

Distance in Undirected Graphs

d(G,)) =3
d(B,C) = 1
d(H,H) = 0

Def'n: The distance
between two
vertices u and v in
an undirected
graph G=(V,E) is the
minimum of the
path lengths over
all u-v paths.

We write d(u,v)

26

Distance in Undirected Graphs

Distance satisfies

° d(uu) =0, forallueV

e d(uyv) =d(v,u), forall
uveyV

* d(uyv) < d(u,w) + d(w,v),

for all uyweV

This last property is
called the triangle

inequality

27

Algorithms on Graphs

* What are the basic operations we need to
describe algorithms on graphs?

Given vertices u and v: are they adjacent!
Given vertex v and edge e, are they incident!
Given an edge e, get its incident vertices (ends)

How many vertices are adjacent to v! (degree of v)

* The vertices adjacent to v are called its neighbors

Get a list of the vertices adjacent to v

* From which we can get the edges incident with v

28

Basic Graph Algorithms

* We'll look at a number of graph algorithms

Connectedness: Is G connected!?
* If not, how many connected components does G have!

Cycle testing: Does G contain a cycle?

* Does G contain a cycle through a given vertex?

If the edges of G have costs:

* What is the cheapest connected subgraph of G that
contains every vertex!?

* What is a cheapest path from u to v!

And more....

29

Testing Connectedness

* How can we determine whether G is
connected?

e Pick a vertex v; see if every vertex u is reachable
from v

e How could we do this?

* Visit the neighbors of v, then visit their neighbors,
etc. See if you reach all vertices

e Assume we can mark a vertex as ‘‘visited”

* How do we efficiently manage all this visiting?

30

Reachability: Breadth-First Search

BIS(G, v) /7 Do a breadth-first search of G starting at v

// pre: all vertices are marked as unvisited
count €< 0:

Create empty queue (J; engueue v; mark v as visited; count++

While Q isn t empty
current < ().dequeue();
Jor each unvisited neighbor u of current :

add u to Q; mark u as vistted: count++
return count:

Now compare value returned from BFS(G,v) to size of V

31

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.

Proof: We’'ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
e Base Case:d=0. Then u = .

* v is reachable from v and BFS(G,v) visits v

* Induction Hypothesis: For some d = 0, if d(u,v)
= d then BFS(G,v) visits u.

32

BFS Theorem

* Induction Step: Assume now that d(u,v) = d+1

e Letv=1vy e, V|, €, Vy, ..., Vg, €441> Vg+] = U be a

path of length d+1 from v to u

e Thenv =vg e, Vv, €, Vy, ..., V4 is a path of length d
from v to v,

e By L.LH., v, is visited by BFS(G,v) and put in Q

* So v4 will be dequeued and all of its unvisited
neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

33

BFS Reflections

The BFS algorithm traced out a tree T,: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

T, is called a BFS tree of G with root v (or from v)
The vertices of T, are visited in level-order

Every path in T, from v to a vertex u is a
shortest possible path from v to u

e That is, the path has length d(v,u)

34

BFS Reflections : Example

Assuming neighbors are visited alphabetically

35

Summary and Observations

An undirected graph models a symmetric
relationship between entities (vertices)

Local features of the graph (e.g. : neighbors)
can be used to determine global features of the
graph (e.g. : distance, connectedness, ...)

Graph algorithms often explore the graph by
following sequences of edges (paths)

An enormous range of problems can be
modeled as graph problems

36

