
1

CSCI 136
Data Structures &

Advanced Programming

Introduction to Graphs

2

Graphs : Our Final Frontier

• Graphs as Mathematical Models
• Basic Terminology
• Important Structural Features

• Algorithms on Graphs
• Graph Data Structures
• Undirected Graphs
• Directed Graphs

• More Graph Algorithms

3

An undirected graph

Basic Definitions & Concepts

A directed graph

4

Graphs Describe the World

• Transportation Networks
• Communication Networks
• Molecular structures
• Dependency structures
• Scheduling
• Matching
• Graphics Modeling
•

5
Nodes = subway stops; Edges = track between stops

6

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Nodes = cities; Edges = rail lines connecting cities

7

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: Connections in graph matter, not precise locations of nodes

8

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

Internet (~1972)

9

Internet (~1998)

10

WORD

CORD

WARD

WOAD

WOLD

WOOD

LORDFORD

WORM

WORE WORK

WORN WORT

Word Game

11

Java

Data Structures

Organization

Discrete Math Theory of comp.

Algorithms

Programming Languages

Operating Systems

AI

Compilers

Graphics

CS Pre-requisite Structure (subset)

Nodes = courses; Edges = prerequisites ***

12

Wire-Frame Models

13

Priority Queue

14

Trie

4

now a dead end. All paths in the trie must eventually lead to a word. If the word being removed was
the only valid word along this path, the nodes along that path must be deleted from the trie along
with the word. For example, if you removed the words zen and not from the trie shown previously,
you should have the result below.

Start

A N

S

E

R E O

W

S

D

O

T

As a general observation, there should never be a leaf node whose isWord field is false. If a node
has no children and does not represent a valid word (i.e., isWord is false), then this node is not
part of any path to a valid word in the trie and such nodes should be deleted when removing a word.
In some cases, removing a word from the trie may not require removing any nodes. For example, if
we were to remove the word new from the above trie, it turns off isWord but all nodes along that
path are still in use for other words.

Important note: when removing a word from the trie, the only nodes that may require deallocation
are nodes on the path to the word that was removed. It would be extremely inefficient if you were to
traverse the whole trie to check for deallocating nodes every time a word was removed, and you
should not use such an inefficient strategy.

Other trie operations

There are few remaining odds and ends to the trie implementation. Creating an iterator and writing
the words to a file both involve a recursive exploration of all paths through the trie to find all of the
contained words. Remember that in both cases it is only words (not prefixes) that you want to
operate on and that these operations need to access the words in alphabetical order.

Once you have a working lexicon, you're ready to implement the snazzy spelling correction
features. There are two additional Lexicon member functions, one for suggesting simple corrections
and the second for regular expressions matching:

Set<string> *SuggestCorrections(string target, int maxDistance);

Set<string> *MatchRegex(string pattern);

Suggesting corrections

First consider the member function SuggestCorrections. Given a (potentially misspelled) target
string and a maximum distance, this function gathers the set of words from the lexicon that have a
distance to the target string less than or equal to the given maxDistance. We define the distance
between two equal-length strings to be the total number of character positions in which the strings
differ. For example, "place" and "peace" have distance 1, "place" and "plank" have distance 2. The
returned set contains all words in the lexicon that are the same length as the target string and are
within the maximum distance.

15

Definition:

An undirected graph G = (V, E)
consists of two sets

• V : the vertices of G

• E : the edges of G

Each edge e in E is defined by a
set of two vertices: its incident
vertices

• We write e = {u,v} and say
that u and v are adjacent

Basic Definitions & Concepts

16

Def'n: A walk from u to v in a
graph G = (V,E) is an alternating
sequence of vertices and edges

u = v0, e1, v1, e2, ... , vk-1, ek, vk = v

such that each ei = {vi-1 , vi} for
i = 1, ... , k

• Note: A walk starts and ends
with a vertex

Walking Around A Graph

B A G F C B A H

17

Def'n: A path from u to v in a
graph G = (V,E) is a walk that
does not use any edge more
than once

Def'n: A simple path is a path
that does not use any vertex
more than once

Walking Around A Graph

B A G F C A H

18

More Definitions : Walking In Circles

• A closed walk in a graph G = (V,E) is a walk
v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that each v0 = vk
• A circuit is a path where v0 = vk
•No repeated edges

• A cycle is a simple path where v0 = vk
•No repeated vertices (uhm, except for v0!)

• The length of any of these is the number of
edges in the sequence

19

Little Tiny Theorems

• If there is a walk from u to v, then there is a
walk from v to u.

• If there is a walk from u to v, then there is a
path from u to v (and from v to u)

• If there is a path from u to v, then there is a
simple path from u to v (and v to u)

• Every circuit through v contains a cycle through v
• Not every closed walk through v contains a cycle

through v! [Try to find an example!]

20

Little Tiny Theorems

If there is a walk from u to v, then there is a walk
from v to u.
Proof
• A walk from u to v is a sequence an alternating

sequence of vertices and edges
u = v0, e1, v1, e2, ... , vk-1, ek, vk = v

• such that each ei = {vi-1 , vi} for i = 1, ... , k
• But then v = vk, ek, vk-1, ek-1, ... , v1, e1, v0 = u is a

walk from v to u.

21

Little Tiny Theorems

If there is a path from u to v, then there is a simple path
from u to v.

Idea:

22

Little Tiny Theorems

Proof:
• Let u = v0, e1, v1, e2, ... , vk-1, ek, vk = v be a path from u

to v (no edge appears twice)
• Suppose some vi appears twice: that is, for some j > i,

vj = vi. Then ei+1 = {vi , vi+1} and ej = {vj-1 , vj}
• But vj = vi, so ej = {vj-1 , vi} and so we can remove

ei+1, vi+1, ei+1, ... , vj-1, ej
• from the original path obtaining the shorter path

u = v0, e1, v1, ... , vk-1, ei, vi = vj, ej+1, vj, …, ek, vk = v
• Repeat until no duplicate vertices remain.

23

Another Useful Graph Fact

• If e = {u,v} we say e is incident to u (and to v)

• The degree of v is the number of edges
incident to v

• Denoted by deg(v)

• Thm: For any graph G = (V,E) :

where |E| is the number of edges in G

• Proof Hint: Induction on |E|: How does
removing an edge change the equation?
• Or: Count pairs (v,e) where v is incident with e

deg(v)
v∈V
∑ = 2 | E |

24

Reachability and Connectedness

• Def’n: A vertex v in G is reachable from a
vertex u in G if there is a path from u to v

• Note: v is reachable from u if and only if u is
reachable from v

• Def’n: An undirected graph G is connected if
for every pair of vertices u, v in G, v is
reachable from u (and, of course, u from v)

• The set of all vertices reachable from v, along
with all edges of G connecting any two of
them, is called the connected component of v

25

Reachability and Connectedness

• 3 components
• A, B, C, D, E, F, G, H are all reachable from

one another
• As are I, J, K, L

• M can reach only itself

26

Distance in Undirected Graphs

Def'n: The distance
between two
vertices u and v in
an undirected
graph G=(V,E) is the
minimum of the
path lengths over
all u-v paths.

We write d(u,v)
d(G,I) = 3
d(B,C) = 1
d(H,H) = 0

27

Distance in Undirected Graphs

Distance satisfies
• d(u,u) = 0, for all u∈ V

• d(u,v) = d(v,u), for all
u,v∈ V

• d(u,v) ≤ d(u,w) + d(w,v),
for all u,v,w∈ V

This last property is
called the triangle
inequality

d(H,E) ≤ d(H,C) + d(C,E)
≤ 2 + 2 = 4

In fact, d(H,E) = 1

28

Algorithms on Graphs

• What are the basic operations we need to
describe algorithms on graphs?
• Given vertices u and v: are they adjacent?

• Given vertex v and edge e, are they incident?
• Given an edge e, get its incident vertices (ends)
• How many vertices are adjacent to v? (degree of v)

• The vertices adjacent to v are called its neighbors

• Get a list of the vertices adjacent to v
• From which we can get the edges incident with v

29

Basic Graph Algorithms

• We’ll look at a number of graph algorithms
• Connectedness: Is G connected?

• If not, how many connected components does G have?

• Cycle testing: Does G contain a cycle?
• Does G contain a cycle through a given vertex?

• If the edges of G have costs:
• What is the cheapest connected subgraph of G that

contains every vertex?

• What is a cheapest path from u to v?

• And more....

30

Testing Connectedness

• How can we determine whether G is
connected?
• Pick a vertex v; see if every vertex u is reachable

from v

• How could we do this?
• Visit the neighbors of v, then visit their neighbors,

etc. See if you reach all vertices
• Assume we can mark a vertex as “visited”

• How do we efficiently manage all this visiting?

31

Reachability: Breadth-First Search

BFS(G, v) // Do a breadth-first search of G starting at v
// pre: all vertices are marked as unvisited
count ß0;
Create empty queue Q; enqueue v; mark v as visited; count++
While Q isn’t empty

current ßQ.dequeue();
for each unvisited neighbor u of current :

add u to Q; mark u as visited; count++
return count;

Now compare value returned from BFS(G,v) to size of V

32

BFS Theorem

Thm. BFS(G,v) visits exactly those vertices u
reachable from v.
Proof: We’ll show that if u is reachable from v
then BFS(G,v) visits u by induction on d = d(v,u)
• Base Case: d = 0. Then u = v.
• v is reachable from v and BFS(G,v) visits v

• Induction Hypothesis: For some d ≥ 0, if d(u,v)
= d then BFS(G,v) visits u.

33

BFS Theorem

• Induction Step: Assume now that d(u,v) = d+1
• Let v = v0, e1, v1, e2, v2, ... , vd, ed+1, vd+1 = u be a

path of length d+1 from v to u
• Then v = v0, e1, v1, e2, v2, ... , vd is a path of length d

from v to vd
• By I.H., vd is visited by BFS(G,v) and put in Q
• So vd will be dequeued and all of its unvisited

neighbors, including u, will be marked as visited

A similar argument shows that if u is visited by
BFS(G,v) then u is reachable from v

34

BFS Reflections

• The BFS algorithm traced out a tree Tv: the
edges connecting a visited vertex to (as yet)
unvisited neighbors

• Tv is called a BFS tree of G with root v (or from v)
• The vertices of Tv are visited in level-order

• Every path in Tv from v to a vertex u is a
shortest possible path from v to u
• That is, the path has length d(v,u)

35

BFS Reflections : Example

Assuming neighbors are visited alphabetically

36

Summary and Observations

• An undirected graph models a symmetric
relationship between entities (vertices)

• Local features of the graph (e.g. : neighbors)
can be used to determine global features of the
graph (e.g. : distance, connectedness, …)

• Graph algorithms often explore the graph by
following sequences of edges (paths)

• An enormous range of problems can be
modeled as graph problems

