
CSCI 136
Data Structures &

Advanced Programming

Lab : Exam Scheduling

2

High-level Overview

Input: a set of student schedules
Output: a schedule (set of time slots) for exams where
• Every course is in some time slot

• No student has two exams in the same time slot
• The number of time slots is as small as possible

We can complete this task by representing the data using a
graph, and then manipulating the graph using a greedy
algorithm.

3

Greedy Algorithms

• A greedy algorithm attempts to find a globally optimum
solution to a problem by making locally optimum
(greedy) choices

• Example: Graph Coloring
• A (proper) coloring of a graph G = (V,E) is an

assignment of a value (color) to each vertex so that
adjacent vertices get different values (colors)

• (Typically, we would try to minimize the number of
colors we use)

4

Greedy Coloring

6

Greedy Coloring : Pseudocode
(Builds a structure C of lists of vertices, where each list
represents vertices of a single “color”)
let C = a structure to hold a collection of lists
while G is not empty:

let L = a new empty list;
pick some vertex v in G;
L.add(v);
for each vertex u ≠ v in G:

if u is not adjacent to any vertex of L:
add u to L

remove all vertices of L from G
add L to C

Return C as the coloring

7

Greedy Coloring

8

Greedy Coloring Observations

• Each list (color class) L is a set of vertices, no two of
which are adjacent (an independent set)

• Each color class is maximal: cannot be made any larger
(if it could have, we would have added that vertex to our
list!)

• The hope is that this results in fewer colors being needed
• But the solution is not always optimum!

9

Lab : Exam Scheduling

Goal: Find a schedule (set of time slots) for exams so that
• No student has two exams in the same time slot
• Every course appears in exactly one time slot

• The number of time slots is as small as possible

This is just the graph coloring problem in disguise!

• Each course is a vertex
• Two vertices are adjacent if the courses share student(s)
• A slot must be an independent set of vertices (that is, a

color class)

10

Lab Notes: Using Graphs

• Create a new graph in structure5:
• GraphListDirected, GraphListUndirected,

• GraphMatrixDirected, GraphMatrixUndirected

Graph<V,E> conflictGraph = new GraphListUndirected<V,E>();

11

Lab : Useful Graph Methods
• void add(V label)

• add vertex to graph

• void addEdge(V vtx1, V vtx2, E label)
• add edge between vtx1 and vtx2

• Iterator<V> neighbors(V vtx1)
• Get iterator for all neighbors to vtx1

• boolean isEmpty()
• Returns true iff graph is empty

• Iterator<V> iterator()
• Get vertex iterator

• V remove(V label)
• Remove a vertex from the graph

• E removeEdge(V vLabel1, V vLabel2)
• Remove an edge from graph

