
CSCI 136
Data Structures &

Advanced Programming

Binary Search Trees Ia



2

Binary Search Trees I



Ordered Structures

Recall: Ordering the items in lists can improve 
search performance
OrderedVector
• Rank (find kth smallest) takes O(1) time
• Search take O(log n) time
OrderedList
• Rank (find kth smallest) takes O(k) time 

• Search takes O(n) time
• But faster than on unordered list



Ordered Structures

However: Adding and removing elements from 
ordered structures can require 𝜭(n) time

OrderedVector
• Find location for new item in O(log n) time
• Insert new item can take 𝜭(n) time
OrderedList
• Find location for new item can take 𝜭(n) time

• Insert new item takes O(1) time



Ordered Structures

Conclusion: Updating an ordered vector or list 
can require 𝜭(n) time

Can we do better?
Yes!
Store items in a binary tree
• As long as it's carefully constructed and 

maintained we can improve update times
• Let's explore this further….



Binary Trees and Orders

• Binary trees impose multiple orderings on 
their elements (pre-/in-/post-/level-orders)

• In particular, in-order traversal suggests a 
natural way to hold (comparable) items
• For each node v in tree

• All values in left subtree of v are ≤ v

• All values in right subtree of v are > v

• This leads us to...



Binary Search Trees

• Binary search trees maintain a total ordering 
among elements

• Definition: A BST T is either:
• Empty
• Has root r with subtrees TL and TR such that

• All nodes in TL have smaller value than r (or are empty)
• All nodes in TR have larger value than r (or are empty)
• TL and TR are also BSTs

• Examples….



A Binary Search Tree



A Binary Search Tree



A Binary Search Tree



A Binary Search Tree



A Binary Search Tree



BST Observations

• The same data can be represented by many 
BST shapes

• Searching for a value in a BST takes time 
proportional to the height of the tree
• Reminder: trees have height, nodes have depth

• Additions to a BST happen at nodes missing at 
least one child (a constraint!)

• Removing from a BST can involve any node



BST Operations

• BSTs will implement the OrderedStructure Interface
• We'll focus on these methods

• add(E item)
• contains(E item)
• get(E item)
• remove(E item)
• iterator()

– This will provide an in-order traversal

• Also supports: size(), isEmpty(), clear(), 



BST Implementation

• A BST will store a few items, including
• A root node of type BinaryTree<E>

• The number of nodes in the tree

• A comparator for imposing the order
• If not provided, a NaturalComparator<E> will be used

• Helper methods (protected) include
• locate(BinaryTree<E> node, E value)

• Find node in subtree having node as root
– Or return a location where node could be added

• predecessor(BinaryTree<E> node)
• Find node in tree immediately preceding node in ordering

• Also a successor() method



BST Operations

• Runtime of add, contains, get, remove will depend on 
runtimes of locate and predecessor methods

• Runtime of locate and predecessor will be : O(height)
• Strategy: Keep the height small

• BinarySearchTree class doesn’t attempt this…
• But other implementations we explore will, including

– AVL trees

– RedBlackSearchTree

– SplayTree

• In fact, we'll see that AVL trees and RedBlack trees 
maintain a height of O(log n)
• So contains/add/remove/get all take O(log n) time!



Sample Applications

• We can use a BST to create a dictionary
• Each node holds a ComparableAssociation

• Nodes are compared using keys
• Two objects are equal if keys are equal

• We can sort using a BST
• Given any set of comparable items, insert them into 

a BST one by one.
• Insert time is O(h), where h is current height of tree
• If hi it the height before inserting ith item, then total insert 

time is O(h1 + … + hn)
• If h is the maximum of these heights, total time is O(h⋅n)



18

Binary Search Tree Implementation


