Sample Final Exam
Questions May 19

These are sample questions of the type you might find on the final exam. You should feel free to consult
course materials as you work on these problems. You will also be able to use course materials on the
final exam, as you were on the mid-term.

For each of the questions, a solution should briefly describe the appropriate data structures (if any),
implementation, and/or algorithm(s), indicate how you would use them to design an efficient solution,
and include a time and space complexity analysis. Specifically,

* Give Big-O time and space bounds for your solution. If your solution specifies multiple steps (e.g.,
you first populate a Vector of Strings by reading in the contents a text file, then you search
through the list elements one at a time), describe the Big-O time and space bounds for each step
and the describe the total overall running time. You should focus on the worst case bounds.

* When describing a data structure, give sufficient implementation details so that your answer
is unambiguous (e.g., do not simply say “graph”; instead specify “a graph using an adjacency
matrix”; do not simply say “a priority queue,” say a “min heap”; and do not simply say “a list”, say
a “doubly linked list” or “a singly linked list that has a head and a tail pointer” if those details
are important).

Some solutions might benefit from using more than one data structure. Feel free to utilize multiple
data structures in your solution if you find it helpful, but keep in mind that the goal is to optimize
performance. When in doubt, prioritize time efficiency over space efficiency.

The quality of your responses will be measured with respect to correctness, efficiency (Big-O time
complexity), and clarity of exposition.

No response to these sample questions should require the writing of Java code.

1. points)ccoeveiiiiii Removing Duplicate Elements ("small”)

You are presented with an array of n arbitrary integers (i.e., you do not know the minimum
value, the maximum value, or the distribution of the integers). You want to determine whether
this array contains any duplicate values. Describe an efficient method that returns t rue if there
are any duplicates, and false otherwise.

Solution:
An efficient example solution: Use a Hashtable or, even more simply, a HashSet).

The idea is to add the integers in the array to the HashsSet, but to check before adding to de-
termine whether the integer has already been added. If it has been, return t rue because you've
found a duplicate. If not, add it to the HashSet and continue processing the remaining elements
of the array. If we use a HashSet and if we assume that get and put are O(1) operations, then
the worst-case performance to check for duplicates is O(n), since get and put are called at most
once for each element of the array. The big-O space requirement is also O(n), since the Hashset
uses space proportional to the size of the array.

A less efficient example solution: Sort the array, using either mergesort or heapsort, each of
which takes O(nlogn) time. Then scan through the elements of the array to see whether any
two consecutive elements are the same. Note: If there are any duplicates, there must be a pair
of duplicates that occur in consecutive locations in the array. This step takes O(n) time for a
total runtime of O(n + nlogn) = O(nlogn). No additional space is needed beyond the array, if
heapsort is used (beyond a few constant-sized local variables for swapping elements, loop indices,
etc—which we mention here but you wouldn’t need to note in your exam solutions).

Third best solution: Use two nested for loops: For each element, compare it to every other

element. If you find a match, return true. The best case and worst case big-O performance is
O(n?).

Other correct but less efficient solutions will also receive partial credit.

2. (0POINtS) ..o Finding k£ Smallest Elements ("medium™)

You are given an unordered Vector data[] of n Comparable items (where n is large), and you are
also given a positive integer k£ (where k& < n). Your goal is to return the k smallest items from the
Vector (from smallest to largest). Describe the most efficient algorithm you can for solving this
problem under the following two scenarios:

(a) The value of k is a constant (that is, k is not a function of n).

(b) The value of k is approximately /n.

Note: This two-part problem would most likely be presented as two separate problems on the
exam, but because of the effect of the constraints on the parameter k& on the ordering of the
different solutions, we thought it made sense to frame this as a single question.

Solution:

(0) An efficient example solution: For each ¢ from 0 to k£ — 1, find the smallest item in the
vector in the slice data[i.n — 1] and swap it with the item i. Then return datali]. Since
finding the smallest item in a slice of the Vector requires a linear scan of that slice, the time
complexity for performing the k scans is O(k x n) = O(n). The space complexity is also O(n).

An equally efficient example solution: Produce a minHeap from the Vector in O(n)
time (using Bottom-up Heapify) and then call removeMin on the minHeap %k times. The &
calls to removeMin take O(klogn) time. The time complexity of the algorithm is therefore
O(n + klogn) = O(n), since k is a constant, and the space needed is also O(n).

A less efficient example solution: Sort the vector (in O(nlogn) time as in the previous
problem) and return the elements in positions 0, ...,k — 1 of the vector. Since an element of
the vector can be accessed in O(1) time, the time complexity is O(nlogn + k) = O(nlogn),
since k is a constant. The space needed is still O(n).

Third best solution: Sort the vector using selection/insertion/bubble sort (requiring O(n?)
time) and return the elements in positions 0, ...,k — 1 of the vector. The time complexity is
O(n? + k) = O(n?) and the space needed is still O(n).

(b) An efficient example solution: Produce a Heap from the Vector in O(n) time (using
Bottom-up Heapify) and then call removeMin on the Heap %k times. The k calls to re-
moveMin take O(kn) time. The time complexity of the algorithm is therefore O(n+klogn) =
O(n + +/nlogn) = O(n) and the space needed is O(n).

A less efficient example solution: Sort the vector and return the elements in positions
0,...,k— 1 of the vector. The time complexity is O(nlogn + k) = O(nlogn + +/n) = O(nlogn)
if you use mergesort or heapsort and the space needed is still O(n).

Third best solution: For each i from 0 to k — 1, find the smallest item in the vector in the
slice data[i..n — 1] and swap it with the item i. Then return data[i]. The time complexity is
O(k x n) = O(n*/?). The space complexity is O(n).

Other correct but less efficient solutions will also receive partial credit.

3. (0POINS) .o Flight Scheduling (“large”)

When searching for airline reservations, Travelocity has a “Shortest Duration” option that will
list options (including multi-stop flights) based on total duration (including the waits between
flights). One feature missing from this option is the ability to indicate how early a passenger can
arrive at their initial departure airport. This question asks how you would provide this option.

Specifically, you are given a large file of flight data of the form
FlightName FromAirport ToAirport DepartureTime ArrivalTime FlightDuration
for example
AA6183 ALB ORD 06:00 07:35 2:35

For simplicity, we assume that

¢ every flight runs every day
¢ all times are ‘24-hour’ time
¢ all departure and arrival times are local to the departure and arrival airports
Note that including the duration of the Albany to Chicago flight above is useful because merely

subtracting departure from arrival times wouldn’t give the correct answer if the airports are in
different time zones.

Your goal is to design a data structure for storing the information about all flights in the file that
will support the following operation

® Vector<String> bestFlightSchedule (String startAt, String finishAt, Time:
arrivingAt)

which produces an itinerary of the sequence of flights that will get the passenger from airport
startAt to airport finishAt as quickly as possible given that they will show up at startAt at
time arrivingAt.

You should assume that this method will be used frequently with different parameters.

You can assume that information about a flight is stored in a F1ight Info object that has accessor
functions for all of the flight information. You can also assume that times are stored in a Time
object that allows reasonable time computations (like addition and subtraction of time periods).

Describe an efficient implementation of a data structure that supports the efficient computation
of the bestFlightSchedule method. A complete correct answer should include

* Descriptions of any data structures your structure might use

¢ A justification of why your implementation should be preferred to other alternatives

¢ The space complexity of your structure and the time complexities of each method

Solution:
An efficient example solution:
We will use a graph data structure, specifically the GraphListDirected structure from the
structure5 package.
¢ Each vertex will represent an airport, storing the airport name as its label

¢ Each edge e = (fromA,toA) will represent the set of all flights from airport fromA to airport
toA. The edge label for edge e will store a vector of F1ight Info objects for each flight from
fromA to toA, sorted by departure time (early to late).

We assume that the edge label supports a method bestFlight (Time t) which returns the
FlightInfo for the flight from fromA to toA that has the earliest arrival time to toA of all
flights from fromA to toA whose departure time is no earlier than time ¢.

The method bestFlightSchedule (startAt, finishAt, arrivingA) now works by run-
ning Dijkstra’s algorithm for the single source shortest paths problem, starting at vertex startAt,
but with two modifications:

* Instead of the Priority Queue storing the entire edge label of an edge, it just stores the
FlightInfo object for the flight returned by bestFlight ().

* The priority of the edge (flight) is the sum of the time spent in airport fromA since arriving
there before taking the flight returned by bestFlight () added to the duration of the flight
returned from bestFlight ().

The tree of paths built by Dijkstra’s algorithm will now have shortest paths from startat to
every airport A reachable from startAt by some sequence of flights, where the path length now
reflects the shortest amount of time required to get to airport A given that the the traveller
arrived at startAt at time arrivingAt.

The space required for this algorithm is proportional to the number of flights in the file, assuming
that the GraphListDirected implementation of the graph is used. If the file contains F flights
then the space required is O(|V| + | F|), since each edge is storing multiple flights but each flight
is only stored in a single edge.

The time required by the original version of Dijkstra’s algorithm is O(|V'| + |E|log|E|). The only
impact of storing multiple flights at each edge is that before adding an “edge” (tt object) to the
priority queue, the bestFlight () method must be run. This method takes time proportional to
the number of flights stored at that edge, so, over the entire run of the algorithm, the time spent
adding to the priority queue will be no worse than O(|F|log|E|) (there is at most 1 flight in the
priority queue for each edge, but figuring out which flight to add requires looking at all flights
associated with that edge).

Thus our method takes time O(|V'|+|F|log | E|), which is, at worst, O(|V'|+|F|log |F|). In fact, since
the method will only visit vertices reachable from V, we can simplify the runtime to O(|F'|log |F).

