
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Kelly Shaw

Lecture 34
Dijkstra’s Algorithm

Topics

Priority Queues

Dijkstra’s algorithm

Your to-dos

1. Review readings from Bailey.
2. Study for the final exam.

a. Pro tip: review quizzes.
b. Do problems in study guide/practice exam.
c. Don’t stress out! Just be methodical and do

your best.
3. Work on resubmissions you plan to submit.

Announcements

Friday, Dec 9 @ 2:35pm (last colloquium of 2022!)
Computer Science Colloquium – Wege TCL 123
Toward Intrusion-Tolerant Critical Infrastructure

Amy Babay, University of Pittsburgh

As critical infrastructure systems are becoming increasingly exposed to
malicious attacks, it is crucial to ensure that they can withstand
sophisticated attacks while continuing to operate correctly and at
their expected level of performance.

In this talk, I will present our work on making intrusion-tolerant critical
infrastructure systems possible and practical. I will start by discussing
our Spire system, the first Supervisory Control and Data
Acquisition (SCADA) system for the power grid that is resilient to both
system-level compromises and sophisticated network-level attacks.

Then, I will present our recent work offering a practical deployment
path for Spire and similar BFT-based systems through a new model for
“intrusion tolerance as a service”. The intrusion-tolerance-as-a-
service model enables critical infrastructure operators to gain the
resilience benefits of intrusion tolerance, while offloading significant
parts of the system management to a service provider. Critically for
practical acceptance, our work shows how these benefits can be
achieved without requiring critical infrastructure operators to expose
confidential or proprietary data and algorithms to the service provider.

Recall: with a heap, we can
implement a priority queue.

Lots of interesting variants on heaps!

From Wikipedia: priority queue page.

Recall the example
from our first class

Graphs: shortest paths

Shortest path problem

The shortest path problem is the problem of finding a path
between two vertices in a graph such that the sum of the
weights of its constituent edges is minimized.

Applications Applications

Applications Applications

Dijkstra’s algorithm

• I n v e n t e d b y E d s g a r
Dijkstra in 1959.

• The original version used
a min-priority queue.

• Designed using pencil and
paper; a lgor i thm was
intended to demonstrate
to non-technical people
how computers could be
useful.

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

A ∞
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

Looking for path from A to F.

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{A, B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

A 0
B ∞
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B undef
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

A 0
B 4
C ∞
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C undef
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u
0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, C, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E ∞
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E undef
F undef
G undef

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{B, D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D ∞
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D undef
E C
F undef
G undef

2 + 3

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, E, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 14
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D B
E C
F undef
G undef

2 + 3

4 + 10

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

u

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{D, F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F ∞
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F undef
G undef

2 + 3

4 + 10

5 + 4

u

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{F}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

u

9 + 11

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Looking for path from A to F.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

 1 function Dijkstra(Graph, source):
 2
 3 create vertex set Q
 4
 5 for each vertex v in Graph:
 6 dist[v] ← INFINITY
 7 prev[v] ← UNDEFINED
 8 add v to Q
10 dist[source] ← 0
11
12 while Q is not empty:
13 u ← vertex in Q with min dist[u]
14
15 remove u from Q
16
17 for each neighbor v of u: // only v that are still in Q
18 alt ← dist[u] + length(u, v)
19 if alt < dist[v]:
20 dist[v] ← alt
21 prev[v] ← u
22
23 return dist[], prev[]

B

A

C

D

E

F

10

4
11

5 4

2 3

Read prev backward from F and reverse.

0 + 4

0 + 2

A 0
B 4
C 2
D 9
E 5
F 20
G ∞

dist

prev

Q

{}

A undef
B A
C A
D E
E C
F D
G undef

2 + 3

4 + 10

5 + 4

9 + 11

Done!

Graphs: traveling salesperson

Applications
Delivery routes.

Optimal 49,687-stop pub crawl

Applications

http://www.math.uwaterloo.ca/tsp/

Recap & Next Class

Today:

Next class:

Dijkstra’s algorithm

Final exam review

