
CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 32
Heap implementation

Topics

Heap implementation

Announcements

1. Final exam: Saturday, Dec 17, 1:30pm. 
Room TBD.

2. Final exam review session, 
in class, last day of class, Friday 12/9.

Your to-dos

1. Last quiz, due Sat.

2. Lab 10 (partner lab), due Tuesday 12/6 by

10pm.

3. Review readings from Bailey.

4. Study for the final exam.

a. Pro tip: review quizzes.

b. Do problems in study guide/practice exam.

c. Don’t stress out! Just be methodical and do

your best.

5. Work on resubmissions you plan to submit.

Announcements

Friday, Dec 2 @ 2:35pm

Computer Science Colloquium – Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in Energy-
Aware Buildings

Sean Barker ’09, Bowdoin College

The proliferation of smart energy meters has resulted in many
opportunities for next-generation buildings. Energy-aware
“smart buildings” may optimize their energy consumption and
provide convenience and economic benefits through analysis of
their meter data. However, storing and analyzing this data
presents computational challenges, especially when conducted
at scale. In this talk, I discuss our work on several problems in
this space, focusing particularly on efficient compression of
smart meter data and the disaggregation of building-wide
consumption into individual device consumption. Our work in
these areas aims to support the development of sustainable,
energy-efficient smart cities and smart grids.

Refresher: binary max heap

42

3 23

1 0 -1

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is ≥ the key of n.

Insertion

42

3 23

1 0 -1

A binary heap is usually implemented as an always-
complete binary tree.

Implementation

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

A binary heap is often implemented using an implicit
binary tree data structure. In other words, heap nodes
are actually stored in an array or vector.

Max heap in action
Build a max heap from the following elements:

56 5 57 0 -7 99

But store the elements in an array (i.e., an implicit
binary tree). Process nodes from left to right.

0 1 2 3 4 5 6 7

a b c d e f g

left child right child
leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

0 1 2 3 4 5 6 7

left child right child

Max heap in action

56 5 57 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

5 57 0 -7 99

56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 0 -7 99

56 5

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

56 5 57

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

57 5 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

-7 99

57 5 56 0

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99

57 5 56 0 -7

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 56 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 99 0 -7 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99 5 57 0 -7 56

Done!

Advantages:

find-max: O(1)

insert: O(log n)

extract: O(log n)

0 1 2 3 4 5 6 7

57 0 -7 56

left child right child

99 5

Max heap in action

How is a binary heap implemented?
(code)

How about a priority queue?
(code)

Which data structure should I choose?

Which data structure should I choose?
Activity:

For each of the following scenarios, any of the data
structures we’ve discussed this semester are possible choices.

Spend some time working with a partner and choose what
you think is the best data structure for that scenario.

However, not every data structure is a good choice.

Justify your choice by writing down the reasons you chose it (hint:
asymptotic arguments about space and time are good justifications!)

Which data structure should I choose?
Activity:

a.) You want to count occurrences of each word in a document then print an alphabetical list
of word frequencies.

b.) You are writing code that will be used to store thousands of records (e.g. each record

contains all the academic information for a specific student) and to retrieve them using a
key (e.g. student name). The data rarely changes.

c.) Assume you are given a collection of pairs as input. Each pair contains the names of two

people. Taken together, the pairs describe a social network. Over time, you will add pairs
when friendships begin and remove them when friendships end. Data changes frequently.
At any point in time, you want to be able to find the k most “popular” people.

d.) You want to count the occurrences of each letter in a document, then print an alphabetical

list of letter frequencies.

Recap & Next Class

Today:

Next class:

Priority queues

Dijkstra’s algorithm

Heaps

