CSCI 136:
 Data Structures
 and
 Advanced Programming

Lecture 30

Graphs, part 2
Instructor: Kelly Shaw
Williams

Topics

Reachability
Connectedness
Graph operations
Graph representations

Your to-dos

1. Read before Wed: Bailey, Ch. 13.1.
2. Lab 10 (partner lab), due Tuesday 11/29 by 10pm.
3. Last quiz this Fri/Sat.

Announcements

Sean Barker '09, Bowdoin College

Friday, Dec 2 @ 2:35pm
Computer Science Colloquium - Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in EnergyAware Buildings

The proliferation of smart energy meters has resulted in many opportunities for next-generation buildings. Energy-aware "smart buildings" may optimize their energy consumption and provide convenience and economic benefits through analysis of their meter data. However, storing and analyzing this data presents computational challenges, especially when conducted at scale. In this talk, I discuss our work on several problems in this space, focusing particularly on efficient compression of smart meter data and the disaggregation of building-wide consumption into individual device consumption. Our work in these areas aims to support the development of sustainable, energy-efficient smart cities and smart grids.

Graphs

Degree

The degree of a vertex v is the number of edges incident to v.

Denoted: $\operatorname{deg}(\mathrm{v})$

What is the degree of $c ?$ of a ?

Useful theorems

(about undirected graphs)

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u).
- If there is a path from u to v, then there is a simple path from u to v (and v to u).
- Every circuit through v contains a cycle through v.
- Not every closed walk through v contains a cycle through V.

Degree on Digraphs

The in-degree of a vertex v is the number of incoming edges incident to v .

Denoted: in-deg (v)

What is the in-degree of c ? of a ?

Degree on Digraphs

The out-degree of a vertex v is the number of outgoing edges incident to v .

Denoted: out-deg(v)

What is the out-degree of c ? of a ?

"Siri, can I drive from Boston to Hong Kong?"
"Siri, which places can I drive to?"

Degree theorem

For any graph $\mathrm{G}=(\mathrm{V}, \mathrm{E})$

$$
\sum_{v \in V} \operatorname{deg}(v)=2|E|
$$

where IEl is the number of edges in G .
Proof: by induction on IEI.
Hint: How does removing an edge change the equation?

Reachability

A vertex v in G is reachable from vertex u in G if there is a path from u to v.

For an undirected graph G, v is reachable from vertex u iff u is reachable from vertex v .

Is c reachable from d? Yes.

Connectedness

An undirected graph G is connected if for every pair of vertices u, v in G, v is reachable from u.

c
The set of all vertices reachable from v , along with all edges of G connecting any two of them, is called the connected component of v.
(note that the connected component is itself a graph)

Bonus video to watch on your own THE INTERNET

youtu.be/OEqKnvzo3no

Fundamental graph ADT operations

adjacent(a, d) = true
adjacent(a, b) = false
adjacent(a, c$)=$ false

c
bool adjacent(Vertex u, Vextex v):
Given vertices u and v, are they adjacent?
(i.e., share an edge?)

Fundamental graph ADT operations

bool incident(Vertex v, Edge e):
Given vertex v and edge e, are they incident?
(i.e., is v an endpoint of edge e?)

Fundamental graph ADT operations

degree(a) $=2$
degree(c) $=0$

c
int degree(Vertex v):
Given vertex v how many vertices are adjacent?

Fundamental graph ADT operations

vertices(1) = [a, b]
vertices(2) $=[\mathrm{d}, \mathrm{b}]$

c

Vertex[] vertices(Edge e):
Given edge e, what are its end points?

Fundamental graph ADT operations

neighbors(a) = [d, b]
neighbors(c) = []

c

Vertex[] neighbors(Vertex v):
Given vertex v what other vertices are adjacent?

Reachability?

How might we implement the following method

```
bool reachable(Vertex u, Vextex v)
```

using the fundamental operations just described?

```
bool adjacent(Vertex u, Vextex v)
```

bool incident(Vertex v, Edge e)
Vertex[] vertices(Edge e)
int degree(Vertex v)
Vertex[] neighbors (Vertex v)

Adjacency list

An adjacency list is a data structure for representing a finite graph. It consists of a list of unordered lists.

Graph data structures

Object-oriented adjacency list

There are many variants on adjacency lists. The most common is the object-oriented adjacency list that stores a list of adjacent vertices in each vertex object.

a: [b]
b: [a,d]
c: [d]
d: [b,c]

Adjacency list

Object-oriented adjacency list:

```
public class Vertex<T> {
```

 T label;
 List<Vertex<T>> neighbors = new SinglyLinkedList<>();
 ...
 \}

Adjacency matrix

An adjacency matrix is a data structure for representing a finite graph. It consists of a square matrix (usually implemented as an array of arrays). In the simplest case, the elements of the matrix indicate whether an edge is present. Elements on the diagonal are defined as zero.

Adjacency list

This latter version is especially thrifty for directed graphs.

a: []
b: [a,d]
c: []
d: [b,c]

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

	a	b	c	d
a	0	1	0	0
b	1	0	0	1
c	0	0	0	1
d	0	1	1	0

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In an undirected graph, the adjacency matrix is symmetric.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form, with from being on the vertical axis.

	a	b	c	d
a	0	0	0	0
b	1	0	0	1
c	0	0	0	0
d	0	0	1	0

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form, with from being on the vertical axis.

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form, with from being on the vertical axis.

	a	b	c	d
a	0	0	0	0
b	1	0	0	1
c	0	0	0	0
d	0	0	1	0

Adjacency matrix

In a directed graph, the adjacency matrix is not symmetric because edges are directed. A directed edge, from \rightarrow to, is conventionally encoded in row-major form, with from being on the vertical axis.

Activity

Write down both adjacency matrix and adjacency list representations for this graph.

Which one do you think is better for this graph?

Recap \& Next Class

Today:

Graph operations
Graph representations
Next class:

Connectedness algorithms

