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Connectedness


Graph operations


Graph representations

Your to-dos

1. Read before Wed: Bailey, Ch. 13.1.

2. Lab 10 (partner lab), due Tuesday 11/29 by 

10pm.

3. Last quiz this Fri/Sat.

Announcements

Friday, Dec 2 @ 2:35pm

Computer Science Colloquium – Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in Energy-
Aware Buildings


Sean Barker ’09, Bowdoin College


The proliferation of smart energy meters has resulted in many 
opportunities for next-generation buildings.  Energy-aware 
“smart buildings” may optimize their energy consumption and 
provide convenience and economic benefits through analysis of 
their meter data. However, storing and analyzing this data 
presents computational challenges, especially when conducted 
at scale.  In this talk, I discuss our work on several problems in 
this space, focusing particularly on efficient compression of 
smart meter data and the disaggregation of building-wide 
consumption into individual device consumption.  Our work in 
these areas aims to support the development of sustainable, 
energy-efficient smart cities and smart grids.



Graphs

Useful theorems

• If there is a walk from u to v, then there is a walk from v to 
u.


• If there is a walk from u to v, then there is a path from u to 
v (and from v to u).


• If there is a path from u to v, then there is a simple path 
from u to v (and v to u).


• Every circuit through v contains a cycle through v.


• Not every closed walk through v contains a cycle through 
v.

(about undirected graphs)

Degree

The degree of a vertex v is the number of edges incident to 
v.


Denoted: deg(v)
d

a

b

c

What is the degree of c? of a?

Degree on Digraphs

The in-degree of a vertex v is the number of incoming 
edges incident to v.


Denoted: in-deg(v)

What is the in-degree of c? of a?
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c



Degree on Digraphs

The out-degree of a vertex v is the number of outgoing 
edges incident to v.


Denoted: out-deg(v)

What is the out-degree of c? of a?

d

a

b

c

Degree theorem

For any graph G = (V, E)

deg(v)
v∈V
∑ = 2 |E |

Proof: by induction on |E|.

Hint: How does removing an edge change the equation?

where |E| is the number of edges in G.

Reachability and Connectedness

“Siri, can I drive from Boston to Hong Kong?”

“Siri, which places can I drive to?”

Reachability

A vertex v in G is reachable from vertex u in G if there is a 
path from u to v.

For an undirected graph G, v is reachable from vertex u iff 
u is reachable from vertex v.

d
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Is c reachable from d? Yes.



Connectedness

An undirected graph G is connected if for every pair of 
vertices u, v in G, v is reachable from u.

The set of all vertices reachable from v, along with all 
edges of G connecting any two of them, is called the 
connected component of v.


(note that the connected component is itself a graph)

d
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Bonus video to watch on your own

youtu.be/0EqKnvzo3no

Graph ADT operations

Fundamental graph ADT operations

d

a

b

c

bool adjacent(Vertex u, Vextex v):


Given vertices u and v, are they adjacent?


(i.e., share an edge?)

adjacent(a, d) = true

adjacent(a, b) = false

adjacent(a, c) = false



Fundamental graph ADT operations

d
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bool incident(Vertex v, Edge e):


Given vertex v and edge e, are they incident?


(i.e., is v an endpoint of edge e?)

incident(a, 1) = true

incident(a, 2) = false

1

2

3

Fundamental graph ADT operations
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Vertex[] vertices(Edge e):


Given edge e, what are its end points?

1

2

3

vertices(1) = [a, b]

vertices(2) = [d, b]

Fundamental graph ADT operations
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int degree(Vertex v):


Given vertex v how many vertices are adjacent?

degree(a) = 2

degree(c) = 0

Fundamental graph ADT operations

d

a

b

c

Vertex[] neighbors(Vertex v):


Given vertex v what other vertices are adjacent?

neighbors(a) = [d, b]

neighbors(c) = []



Reachability?
How might we implement the following method


bool reachable(Vertex u, Vextex v)


using the fundamental operations just described?

bool adjacent(Vertex u, Vextex v)

bool incident(Vertex v, Edge e)

Vertex[] vertices(Edge e)

int degree(Vertex v)

Vertex[] neighbors(Vertex v)

Graph data structures

Adjacency list

An adjacency list is a data structure for representing a finite 
graph.  It consists of a list of unordered lists.

[[c,d],[d,b],[a,b]]
c

b
a

d

Object-oriented adjacency list

a: [b]

b: [a,d]

c: [d]

d: [b,c]

There are many variants on adjacency lists.  The most 
common is the object-oriented adjacency list that stores a 
list of adjacent vertices in each vertex object.

c

b
a

d



Adjacency list
Object-oriented adjacency list:

public class Vertex<T> {

    T label;

    List<Vertex<T>> neighbors = new SinglyLinkedList<>();

    …

} 

c

b
a

d

(strictly speaking, c and d are references to Vertex objects)

label

neighbors

d

head tail

Vertex

SLL

Node Node

c b Ø

Adjacency list

a: []

b: [a,d]

c: []

d: [b,c]

This latter version is especially thrifty for directed graphs.

c

b
a

d

Adjacency matrix
An adjacency matrix is a data structure for representing a 
finite graph.  It consists of a square matrix (usually 
implemented as an array of arrays).  In the simplest case, 
the elements of the matrix indicate whether an edge is 
present.  Elements on the diagonal are defined as zero.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

In an undirected graph, the adjacency matrix is 
symmetric.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0



Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1
d 0 1 1 0

In an undirected graph, the adjacency matrix is 
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1
c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is 
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is 
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric 
because edges are directed.  A directed edge, from→to, is 
conventionally encoded in row-major form, with from being 
on the vertical axis.



Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric 
because edges are directed.  A directed edge, from→to, is 
conventionally encoded in row-major form, with from being 
on the vertical axis.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1
c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric 
because edges are directed.  A directed edge, from→to, is 
conventionally encoded in row-major form, with from being 
on the vertical axis.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric 
because edges are directed.  A directed edge, from→to, is 
conventionally encoded in row-major form, with from being 
on the vertical axis.

Activity

Write down both adjacency matrix and adjacency list 
representations for this graph.

c

b
a

d

e

Which one do you think is better for this graph?



Recap & Next Class

Today:

Next class:

Graph operations

Connectedness algorithms

Graph representations


