
CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 30
Graphs, part 2

Topics

Reachability

Connectedness

Graph operations

Graph representations

Your to-dos

1. Read before Wed: Bailey, Ch. 13.1.

2. Lab 10 (partner lab), due Tuesday 11/29 by

10pm.

3. Last quiz this Fri/Sat.

Announcements

Friday, Dec 2 @ 2:35pm

Computer Science Colloquium – Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in Energy-
Aware Buildings

Sean Barker ’09, Bowdoin College

The proliferation of smart energy meters has resulted in many
opportunities for next-generation buildings. Energy-aware
“smart buildings” may optimize their energy consumption and
provide convenience and economic benefits through analysis of
their meter data. However, storing and analyzing this data
presents computational challenges, especially when conducted
at scale. In this talk, I discuss our work on several problems in
this space, focusing particularly on efficient compression of
smart meter data and the disaggregation of building-wide
consumption into individual device consumption. Our work in
these areas aims to support the development of sustainable,
energy-efficient smart cities and smart grids.

Graphs

Useful theorems

• If there is a walk from u to v, then there is a walk from v to
u.

• If there is a walk from u to v, then there is a path from u to
v (and from v to u).

• If there is a path from u to v, then there is a simple path
from u to v (and v to u).

• Every circuit through v contains a cycle through v.

• Not every closed walk through v contains a cycle through
v.

(about undirected graphs)

Degree

The degree of a vertex v is the number of edges incident to
v.

Denoted: deg(v)
d

a

b

c

What is the degree of c? of a?

Degree on Digraphs

The in-degree of a vertex v is the number of incoming
edges incident to v.

Denoted: in-deg(v)

What is the in-degree of c? of a?

d

a

b

c

Degree on Digraphs

The out-degree of a vertex v is the number of outgoing
edges incident to v.

Denoted: out-deg(v)

What is the out-degree of c? of a?

d

a

b

c

Degree theorem

For any graph G = (V, E)

deg(v)
v∈V
∑ = 2 |E |

Proof: by induction on |E|.

Hint: How does removing an edge change the equation?

where |E| is the number of edges in G.

Reachability and Connectedness

“Siri, can I drive from Boston to Hong Kong?”

“Siri, which places can I drive to?”

Reachability

A vertex v in G is reachable from vertex u in G if there is a
path from u to v.

For an undirected graph G, v is reachable from vertex u iff
u is reachable from vertex v.

d

a

b

c

Is c reachable from d? Yes.

Connectedness

An undirected graph G is connected if for every pair of
vertices u, v in G, v is reachable from u.

The set of all vertices reachable from v, along with all
edges of G connecting any two of them, is called the
connected component of v.

(note that the connected component is itself a graph)

d

a

b

c

Bonus video to watch on your own

youtu.be/0EqKnvzo3no

Graph ADT operations

Fundamental graph ADT operations

d

a

b

c

bool adjacent(Vertex u, Vextex v):

Given vertices u and v, are they adjacent?

(i.e., share an edge?)

adjacent(a, d) = true

adjacent(a, b) = false

adjacent(a, c) = false

Fundamental graph ADT operations

d

a

b

c

bool incident(Vertex v, Edge e):

Given vertex v and edge e, are they incident?

(i.e., is v an endpoint of edge e?)

incident(a, 1) = true

incident(a, 2) = false

1

2

3

Fundamental graph ADT operations

d

a

b

c

Vertex[] vertices(Edge e):

Given edge e, what are its end points?

1

2

3

vertices(1) = [a, b]

vertices(2) = [d, b]

Fundamental graph ADT operations

d

a

b

c

int degree(Vertex v):

Given vertex v how many vertices are adjacent?

degree(a) = 2

degree(c) = 0

Fundamental graph ADT operations

d

a

b

c

Vertex[] neighbors(Vertex v):

Given vertex v what other vertices are adjacent?

neighbors(a) = [d, b]

neighbors(c) = []

Reachability?
How might we implement the following method

bool reachable(Vertex u, Vextex v)

using the fundamental operations just described?

bool adjacent(Vertex u, Vextex v)

bool incident(Vertex v, Edge e)

Vertex[] vertices(Edge e)

int degree(Vertex v)

Vertex[] neighbors(Vertex v)

Graph data structures

Adjacency list

An adjacency list is a data structure for representing a finite
graph. It consists of a list of unordered lists.

[[c,d],[d,b],[a,b]]
c

b
a

d

Object-oriented adjacency list

a: [b]

b: [a,d]

c: [d]

d: [b,c]

There are many variants on adjacency lists. The most
common is the object-oriented adjacency list that stores a
list of adjacent vertices in each vertex object.

c

b
a

d

Adjacency list
Object-oriented adjacency list:

public class Vertex<T> {

 T label;

 List<Vertex<T>> neighbors = new SinglyLinkedList<>();

 …

}

c

b
a

d

(strictly speaking, c and d are references to Vertex objects)

label

neighbors

d

head tail

Vertex

SLL

Node Node

c b Ø

Adjacency list

a: []

b: [a,d]

c: []

d: [b,c]

This latter version is especially thrifty for directed graphs.

c

b
a

d

Adjacency matrix
An adjacency matrix is a data structure for representing a
finite graph. It consists of a square matrix (usually
implemented as an array of arrays). In the simplest case,
the elements of the matrix indicate whether an edge is
present. Elements on the diagonal are defined as zero.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

In an undirected graph, the adjacency matrix is
symmetric.

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1
d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1
c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 1 0 0

b 1 0 0 1

c 0 0 0 1

d 0 1 1 0

In an undirected graph, the adjacency matrix is
symmetric.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form, with from being
on the vertical axis.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form, with from being
on the vertical axis.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1
c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form, with from being
on the vertical axis.

Adjacency matrix

c

b
a

d
a b c d

a 0 0 0 0

b 1 0 0 1

c 0 0 0 0

d 0 0 1 0

In a directed graph, the adjacency matrix is not symmetric
because edges are directed. A directed edge, from→to, is
conventionally encoded in row-major form, with from being
on the vertical axis.

Activity

Write down both adjacency matrix and adjacency list
representations for this graph.

c

b
a

d

e

Which one do you think is better for this graph?

Recap & Next Class

Today:

Next class:

Graph operations

Connectedness algorithms

Graph representations

