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Lecture 29
Hashtables and Graphs

Topics

Hash collisions


Graphs

Your to-dos

1. Read before Mon: Bailey, Ch. 16.4.

2. Lab 9 (partner lab), due Tuesday 11/29 by 

10pm.

3. No quiz this week!

Pigeonhole principle



Linear probing

Downside: values cluster around collisions.
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collision!

Likelihood of collisions grows as cluster grows.

Our table is still half empty!  This is bad!
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Linear probing
h(key) + c × i

Changing c can mitigate clustering.


E.g., c = 2.
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Linear probing

Changing c can mitigate clustering.


But it can also reduce the table’s capacity.
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Now we are only


using 1/c buckets!

Linear probing: deletion

Deletion is problematic when using linear probing.
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delete(“Dan”)
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We can no longer find Dirk.



Linear probing: deletion

Deletion is problematic when using linear probing.
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Addressed by leaving a sentinel value at deleted location.

Doesn’t reclaim space until all colliding entries deleted.

External chaining

External chaining is a method for resolving collisions in a 
hash table.  Collisions are resolved by storing more than one 
value in a bucket, e.g., using a list.

External chaining

Same bad hash function:


((int) key.charAt(0)) % A.length
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Deletion is trivial.
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Hash Table Expansion

When a hash table fills up, we should expand, just as with a 
Vector.  But there are some problems…

Hash Table Expansion

Hash tables rely on the size of the underlying array to do 
the indexing.  Recall:

int index(K key) {  
  return abs(h(key) % A.length);  
}

When a hash table expands, we usually address this by 
rehashing all elements during a copy.  Why is this OK?

Hash Table Expansion

Another issue: hash table performance degrades severely as 
it fills up.
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Recall that we can have an effectively full hash table even 
when there is actually space.

h(key) + c × i

where c = 2

Hash Table Expansion

Therefore, we resize before the table is likely to be full.

Let n be the number of elements stored in a hash table.

Let m be the number of buckets.

Load factor = n / m

When the desired load factor is exceeded, the array is 
expanded.



Hash Table Expansion

There are two ways to find a good load factor.

1. Careful analysis of the probability of attempting to insert 
more than one element into the same bucket, combined 
with a preference for acceptable average slowdown.


2. Empirical measurement, combined with a preference for 
acceptable average slowdown.

A load factor between 0.7 and 0.8 is generally thought to be 
an acceptable default.

Complexity

Graphs

Tons of Applications

Nodes = subway stops;  Edges = track between stops
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Tons of Applications

Nodes = cities;  Edges = rail lines connecting cities

Tons of Applications
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Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?
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(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)



Tons of Applications Tons of Applications

A “wireframe” model

Dijkstra’s Algorithm Undirected graph ADT

An undirected graph G is an abstract data type that 
consists of two sets:


• a set V of vertices (or nodes), and

• a set E of undirected edges.



Undirected graph ADT

A graph can be used to represent any structure in which 
pairs of elements are “related.”


In an undirected graph, arbitrary data can be associated 
either with a vertex, an edge, or both.


For example: vertex data = city; edge data = distance.


Undirected graphs are a good choice when a relation is 
symmetric.  E.g., the distance from Williamstown to Boston 
is the same as the distance from Boston to Williamstown.

Undirected graph
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G = (V, E)

Directed graph ADT

A directed graph G is an abstract data type that consists of 
two sets:


• a set V of vertices (or nodes), and

• a set E of directed edges.

Directed graph ADT
In a directed graph, data can be associated either with a 
vertex, an edge, or both.


Example: vertex data = people; edge data = “loves”.


A directed graph is a good choice when relations 
between vertices are not symmetric.



Directed graph
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Walking a graph
A walk from u to v in a graph G = (V, E) is an alternating 
sequence of vertices and edges


u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v


such that ei = {vi , vi+1} for i = 1, ... , k

• A walk starts and ends with a vertex.


• A walk can travel over any edge and any vertex any 
number of times.


• If no edge appears more than once, the walk is a path.


• If no vertex appears more than once, the walk is a simple 
path.

Walking in circles

A closed walk in a graph G = (V, E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk

• A circuit is a path where v0 = vk (no repeated edges)


• A cycle is a simple path where v0  =  vk  (no repeated 
vertices except v0)


• The length of a walk is the number of edges in the 
sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of 
the arrows.
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There is no directed walk from b to a.



Useful theorems

• If there is a walk from u to v, then there is a walk from v to 
u.


• If there is a walk from u to v, then there is a path from u to 
v (and from v to u).


• If there is a path from u to v, then there is a simple path 
from u to v (and v to u).


• Every circuit through v contains a cycle through v.


• Not every closed walk through v contains a cycle through 
v.

(about undirected graphs)

Recap & Next Class

Today:

Next class:

Graph operations

Graphs

Graph representations


