
CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 29
Hashtables and Graphs

Topics

Hash collisions

Graphs

Your to-dos

1. Read before Mon: Bailey, Ch. 16.4.

2. Lab 9 (partner lab), due Tuesday 11/29 by

10pm.

3. No quiz this week!

Pigeonhole principle

Linear probing

Downside: values cluster around collisions.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Ed”, value: 7

Dirk
20

Don
6

index(“Ed”) → 5

collision!

Likelihood of collisions grows as cluster grows.

Our table is still half empty! This is bad!

6 7

Linear probing
h(key) + c × i

Changing c can mitigate clustering.

E.g., c = 2.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!
Dirk
20

6

Linear probing

Changing c can mitigate clustering.

But it can also reduce the table’s capacity.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

Dirk
20

6

Don
6

Doug
22

Deb
101 ???

Now we are only

using 1/c buckets!

Linear probing: deletion

Deletion is problematic when using linear probing.

0 1 2 3 4 5 6 7

A
Dan
-11

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

We can no longer find Dirk.

Linear probing: deletion

Deletion is problematic when using linear probing.

0 1 2 3 4 5 6 7

A
keep  
look  
ing!

Dirk
20

Don
6

Doug
22

delete(“Dan”)

lookup(“Dirk”)

Addressed by leaving a sentinel value at deleted location.

Doesn’t reclaim space until all colliding entries deleted.

External chaining

External chaining is a method for resolving collisions in a
hash table. Collisions are resolved by storing more than one
value in a bucket, e.g., using a list.

External chaining

Same bad hash function:

((int) key.charAt(0)) % A.length

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

0 1 2 3 4 5 6 7

A

Dirk
20

External chaining: deletion

Deletion is trivial.

0 1 2 3 4 5 6 7

A

Dan
-11

Dirk
20

Hash Table Expansion

When a hash table fills up, we should expand, just as with a
Vector. But there are some problems…

Hash Table Expansion

Hash tables rely on the size of the underlying array to do
the indexing. Recall:

int index(K key) {  
 return abs(h(key) % A.length);  
}

When a hash table expands, we usually address this by
rehashing all elements during a copy. Why is this OK?

Hash Table Expansion

Another issue: hash table performance degrades severely as
it fills up.

0 1 2 3 4 5 6 7

A
Dan
-11

Dirk
20

Don
6

Doug
22

Deb
101 ???

Recall that we can have an effectively full hash table even
when there is actually space.

h(key) + c × i

where c = 2

Hash Table Expansion

Therefore, we resize before the table is likely to be full.

Let n be the number of elements stored in a hash table.

Let m be the number of buckets.

Load factor = n / m

When the desired load factor is exceeded, the array is
expanded.

Hash Table Expansion

There are two ways to find a good load factor.

1. Careful analysis of the probability of attempting to insert
more than one element into the same bucket, combined
with a preference for acceptable average slowdown.

2. Empirical measurement, combined with a preference for
acceptable average slowdown.

A load factor between 0.7 and 0.8 is generally thought to be
an acceptable default.

Complexity

Graphs

Tons of Applications

Nodes = subway stops; Edges = track between stops

Seattle

Portland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Tons of Applications

Nodes = cities; Edges = rail lines connecting cities

Tons of Applications

SeattlePortland

SF

LA

Denver

Dallas

Chicago

NY

Boston

Atlanta

Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?

SRI

STAN

UCLA

RAND

UTAH

CMU

NRL

HARV

MIT

BBN

(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)

Tons of Applications Tons of Applications

A “wireframe” model

Dijkstra’s Algorithm Undirected graph ADT

An undirected graph G is an abstract data type that
consists of two sets:

• a set V of vertices (or nodes), and

• a set E of undirected edges.

Undirected graph ADT

A graph can be used to represent any structure in which
pairs of elements are “related.”

In an undirected graph, arbitrary data can be associated
either with a vertex, an edge, or both.

For example: vertex data = city; edge data = distance.

Undirected graphs are a good choice when a relation is
symmetric. E.g., the distance from Williamstown to Boston
is the same as the distance from Boston to Williamstown.

Undirected graph

d

a

b

c

G = (V, E)

Directed graph ADT

A directed graph G is an abstract data type that consists of
two sets:

• a set V of vertices (or nodes), and

• a set E of directed edges.

Directed graph ADT
In a directed graph, data can be associated either with a
vertex, an edge, or both.

Example: vertex data = people; edge data = “loves”.

A directed graph is a good choice when relations
between vertices are not symmetric.

Directed graph

d

a

b

c

G = (V, E)

Walking a graph
A walk from u to v in a graph G = (V, E) is an alternating
sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that ei = {vi , vi+1} for i = 1, ... , k

• A walk starts and ends with a vertex.

• A walk can travel over any edge and any vertex any
number of times.

• If no edge appears more than once, the walk is a path.

• If no vertex appears more than once, the walk is a simple
path.

Walking in circles

A closed walk in a graph G = (V, E) is a walk

v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk

• A circuit is a path where v0 = vk (no repeated edges)

• A cycle is a simple path where v0 = vk (no repeated
vertices except v0)

• The length of a walk is the number of edges in the
sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of
the arrows.

d

a

b

c

There is no directed walk from b to a.

Useful theorems

• If there is a walk from u to v, then there is a walk from v to
u.

• If there is a walk from u to v, then there is a path from u to
v (and from v to u).

• If there is a path from u to v, then there is a simple path
from u to v (and v to u).

• Every circuit through v contains a cycle through v.

• Not every closed walk through v contains a cycle through
v.

(about undirected graphs)

Recap & Next Class

Today:

Next class:

Graph operations

Graphs

Graph representations

