CSCI 136: Data Structures and Advanced Programming
Lecture 29
Hashtables and Graphs

Instructor: Kelly Shaw Williams

Your to-dos

1. Read before Mon: Bailey, Ch. 16.4.
2. Lab 9 (partner lab), due Tuesday 11/29 by 10pm.
3. No quiz this week!

Topics

Hash collisions
Graphs

Pigeonhole principle
Linear probing

Downside: values **cluster** around collisions.

- **key**: “Ed”, **value**: 7
- index(“Ed”) → 5

Likelihood of collisions grows as cluster grows.
Our table is **still half empty**! This is **bad**!

Changing c can mitigate clustering.
E.g., $c = 2$.

key: “Dirk”, **value**: 20
index(“Dirk”) → 4

Linear probing: deletion

Deletion is problematic when using linear probing.

- **key**: “Dan”, **value**: -11
index(“Dan”) → 4

Now we are only using $1/c$ buckets!

- **key**: “Dirk”, **value**: 20
index(“Dirk”) → ⊥/6

delete(“Dan”)
lookup(“Dirk”)
We can no longer find Dirk.
Linear probing: deletion

Deletion is problematic when using linear probing.

Addressed by leaving a **sentinel** value at deleted location.

```text
delete("Dan")
lookup("Dirk")
```

Doesn’t reclaim space until all colliding entries deleted.

External chaining

External chaining is a method for resolving collisions in a hash table. Collisions are resolved by storing **more than one value in a bucket**, e.g., using a **list**.

```text
(((int) key.charAt(0)) % A.length)
```

Same **bad hash function**:

```
key: “Dan”, value: -11
index("Dan") → 4
```

key: “Dirk”, value: 20
index("Dirk") → 4

External chaining: deletion

Deletion is trivial.
Hash Table Expansion

When a hash table fills up, we should expand, just as with a Vector. But there are some problems...

Hash Table Expansion

Hash tables rely on the size of the underlying array to do the indexing. Recall:

```java
int index(K key) {
    return abs(h(key) % A.length);
}
```

When a hash table expands, we usually address this by rehashing all elements during a copy. Why is this OK?

Hash Table Expansion

Another issue: hash table performance degrades severely as it fills up.

Recall that we can have an effectively full hash table even when there is actually space.

\[h(key) + c \times i \]

where \(c = 2 \)

<table>
<thead>
<tr>
<th>A</th>
<th>Don 6</th>
<th>Doug 22</th>
<th>Dan -11</th>
<th>Dirk 20</th>
<th>Deb 101 ???</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Hash Table Expansion

Therefore, we resize before the table is likely to be full.

Let \(n \) be the number of elements stored in a hash table.

Let \(m \) be the number of buckets.

Load factor = \(\frac{n}{m} \)

When the desired load factor is exceeded, the array is expanded.
Hash Table Expansion

There are two ways to find a good load factor.

1. **Careful analysis of the probability** of attempting to insert more than one element into the same bucket, combined with a preference for acceptable average slowdown.

2. **Empirical measurement**, combined with a preference for acceptable average slowdown.

A load factor between 0.7 and 0.8 is generally thought to be an acceptable default.

Complexity

<table>
<thead>
<tr>
<th>Method</th>
<th>Successful</th>
<th>Unsuccessful</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear probes</td>
<td>$\frac{1}{2} \left(1 + \frac{1}{1-\alpha}\right)$</td>
<td>$\frac{1}{2} \left(1 + \frac{1}{1-\alpha}\right)$</td>
</tr>
<tr>
<td>Double hashing</td>
<td>$\frac{1}{\alpha} \ln \frac{1}{1-\alpha}$</td>
<td>$\frac{1}{1-\alpha}$</td>
</tr>
<tr>
<td>External chaining</td>
<td>$1 + \frac{1}{2} \alpha$</td>
<td>$\alpha + e^{-\alpha}$</td>
</tr>
</tbody>
</table>

Figure 15.11 Expected theoretical performance of hashing methods, as a function of α, the current load factor. Formulas are for the number of association compares needed to locate the correct value or to demonstrate that the value cannot be found.

Tons of Applications

Nodes = subway stops; Edges = track between stops
Tons of Applications

Nodes = cities; Edges = rail lines connecting cities

Tons of Applications

Note: A connection in a graph matters, but not the location of a node.

Tons of Applications

Any guesses as to what this is?
(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)
An undirected graph G is an abstract data type that consists of two sets:

• a set V of vertices (or nodes), and
• a set E of undirected edges.
Undirected graph ADT

A graph can be used to represent any structure in which pairs of elements are “related.”

In an undirected graph, arbitrary data can be associated either with a vertex, an edge, or both.

For example: vertex data = city; edge data = distance.

Undirected graphs are a good choice when a relation is symmetric. E.g., the distance from Williamstown to Boston is the same as the distance from Boston to Williamstown.

Directed graph ADT

A directed graph G is an abstract data type that consists of two sets:

- a set V of vertices (or nodes), and
- a set E of directed edges.

Directed graph ADT

In a directed graph, data can be associated either with a vertex, an edge, or both.

Example: vertex data = people; edge data = “loves”.

A directed graph is a good choice when relations between vertices are not symmetric.
Directed graph

\[G = (V, E) \]

Walking a graph

A walk from \(u \) to \(v \) in a graph \(G = (V, E) \) is an alternating sequence of vertices and edges

\[u = v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k = v \]

such that \(e_i = \{v_i, v_{i+1}\} \) for \(i = 1, \ldots, k \)

- A walk starts and ends with a vertex.
- A walk can travel over any edge and any vertex any number of times.
- If no edge appears more than once, the walk is a path.
- If no vertex appears more than once, the walk is a simple path.

Walking in circles

A closed walk in a graph \(G = (V, E) \) is a walk

\[v_0, e_1, v_1, e_2, v_2, \ldots, v_{k-1}, e_k, v_k \]

such that \(v_0 = v_k \)

- A circuit is a path where \(v_0 = v_k \) (no repeated edges)
- A cycle is a simple path where \(v_0 = v_k \) (no repeated vertices except \(v_0 \))
- The length of a walk is the number of edges in the sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of the arrows.

There is no directed walk from \(b \) to \(a \).
Useful theorems
(about undirected graphs)

• If there is a walk from u to v, then there is a walk from v to u.
• If there is a walk from u to v, then there is a path from u to v (and from v to u).
• If there is a path from u to v, then there is a simple path from u to v (and v to u).
• Every circuit through v contains a cycle through v.
• Not every closed walk through v contains a cycle through v.

Recap & Next Class

Today:

Graphs

Next class:
Graph operations
Graph representations