
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Kelly Shaw

Lecture 28
Hash collisions

Topics

Biased sampling

Hashcodes

Hash collisions

Your to-dos

1. Read before Mon: Bailey, Ch. 16.3.
2. Lab 9 (partner lab), due Tuesday 11/29 by

10pm.
3. Quiz, due Saturday evening.

Study tip #4
“Failure is always an option.”

Study tip #4

“'Failure is always an option' came up as a
joke … when we were screwing something
up over and over again, but it’s an awesome
way to think about the scientific method. We
tend to think about science as … a scientist
saying, “I want to prove this thing,” and then
coming up with an experiment to prove it.
Nothing could be further from the truth.

Adam Savage (MythBusters)

Study tip #4

[In reality, a] scientist simply says, “I wonder
if?” and then builds a methodology to test
whether [the] theory is correct, or even to
figure out what [the] theory might be. So to
think that an experiment could “fail” is
ludicrous. Every experiment tells you
something, even if it’s just don’t do that
experiment the same way again.”

Adam Savage (MythBusters)

Biased sampling
What does this program do?

Random r = new Random();
int num = r.nextInt(10);

Chooses a value between 0 and 9 inclusive
with uniformly random probability.

I.e., all values are equally likely.

What if we want to specify
the likelihood?

letter likelihood

‘a’ 1

‘b’ 6

‘c’ 3

A naïve algorithm

‘a’ ‘b’ ‘b’ ‘b’ ‘b’ ‘b’ ‘b’ ‘c’ ‘c’ ‘c’

char[] arr = new char[10];
// … code to fill array …
Random r = new Random();
int num = r.nextInt(10);
char c = arr[num];

0 1 2 3 4 5 6 7 8 9

A better algorithm

letter likelihood

‘a’ 1

‘b’ 6

‘c’ 3

1. Compute the sum of the likelihoods (here: 10).
2. Choose a number n between 0 … sum (exclusive) uniformly

randomly.
3. Set soFar = 0.
4. For each letter, add the likelihood to soFar and then check whether

n < soFar. When n < soFar you’ve found the right letter.

Try it at home!

‘a’ ‘b’ ‘b’ ‘b’ ‘b’ ‘b’ ‘b’ ‘c’ ‘c’ ‘c’

0 1 2 3 4 5 6 7 8 9

Notice that you get the same answer
as using the naïve method.

1. Compute the sum of the likelihoods (here: 10).
2. Choose a number n between 0 … sum (exclusive) uniformly

randomly.
3. Set soFar = 0.
4. For each letter, add the likelihood to soFar and then check whether

n < soFar. When n < soFar you’ve found the right letter.

Hash codes
Hashing is so important that every Object in Java has a
built-in hash function.

Hash codes
Good hash functions are already provided for built-in types.

Provide one for your own class by overriding hashCode.

Hash tables

Hash collisions

A hash collision is when two or more distinct keys have
the same hash value.

0 1 2 3 4 5 6 7

A ?

index(“Dan”) → 6

index(“Benedict Cumberbatch”) → 6

Pigeonhole principle Dealing with collisions

There are two approaches to dealing with collisions:

1. Change your hash function.

2. Change your hash table design.

The easier of the two approaches turns out to be #2.

We discuss two hash table designs: those that resolve
collisions using open addressing, and those that resolve
collisions using external chaining.

Open addressing

Open addressing is a method for resolving collisions in a
hash table. Collisions are resolved by probing, which is a
predetermined method for searching the hash table (aka a
probe sequence). On insertion, probing finds the first
available bucket. On lookup, probing searches until either
the key is found or an empty space is found.

Linear probing
Suppose our keys are Strings and our hash function is

((int) key.charAt(0)) % A.length

(i.e., a low-quality hash function).

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (often 1) and i is the i th attempt.

0 1 2 3 4 5 6 7

A

index(“Dan”) → 4

index(“Dirk”) → 4

Dan
-11

key: “Dan”, value: -11

key: “Dirk”, value: 20

collision!

retry

Dirk
20

5

Linear probing

Linear probing works by scanning for h(key) + c × i, where c
is a constant (often 1) and i is the i th attempt.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Don”, value: -11

Dirk
20

index(“Don”) → 4 5 6

Don
6

Linear probing

Downside: values cluster around collisions.

0 1 2 3 4 5 6 7

A
Dan
-11

key: “Ed”, value: 7

Dirk
20

Don
6

index(“Ed”) → 5

collision!

Likelihood of collisions grows as cluster grows.

Our table is still half empty! This is bad!

6 7

