CSCI 136:
Data Structures
and
Advanced Programming

Lecture 27

Hash tables

Instructor: Kelly Shaw
Williams

Topics

Hash tables

Hash functions

Your to-dos

1. Read before Wed: Bailey, Ch 16-16.2.

2. Lab 9 (partner lab), due Tuesday 11/29 by 10pm.

3. Quiz, due Saturday evening.

Announcements

Comy Science Colloqui
Friday, November 18 @ 2:35pm in Wege (TCL 123)
Daniel Malinsky (Columbia)

Identifying Causal Determinants of Clinical Outcomes from
Electronic Health Records Using Graphical Structure Learning:
Challenges and Opportunities in Causal Discovery

Many goals within causal inference, including estimating average
treatment effects and understanding path-specific mechanisms,
depend on knowing the qualitative causal structure underlying a
domain. In this work we apply methods for graphical causal
discovery (specifically the FCI algorithm) to observational data in the
form of electronic health records (EHR) from Johns Hopkins
Hospital. Our goal is to understand the causal determinants of
postoperative length of stay for patients undergoing cardiac surgery
procedures, in order to inform possible interventions that support
faster patient recovery. We discuss the challenges in applying causal
discovery methods to electronic health records and opportunities for
future work.

Hash tables

Dan’s favorite data structure

Note about lab 9:

You should use the structure5 Hashtable implementation.

But if you want the extra challenge, implement your own!

Recall: arrays

An array is a data structure consisting of a sequential
collection of elements, each identified by an index.

A 13 2 451 | 42 9 6 -4 8

0 1 2 3 4 5 6 7
Performance guarantees:
1. read an element: O(1)

2. write an element: O(1)

Can we capture some of this for a more general structure?

Generalization: associative array

An associative array is a data structure consisting of a
sequential collection of elements, each identified by a key.
An associative array is a map.

A 13 2 451 | 42 9 6 -4 8

Joe Adam Sue Ed Sam Fay Dan Ted
Performance guarantees:
1. read an element: O(1)?

2. write an element: O(1)?

How can we make this happen?

What about MapTree?

It is already a map, which is good, but...

A 13 2 451 | 42 9 6 -4 8

Joe Adam Sue Ed Sam Fay Dan Ted

Performance guarantees:
1. read an element: O(log n) (assuming balance)

2. write an element: O(log n) (assuming balance)

Not fast enough!

Could we actually just use an array?

A 13 2 451 | 42 9 6 -4 8

Joe Adam Sue Ed Sam Fay Dan Ted

What do you think? What’s the obstacle?

Need: function to map key to index

Suppose we have a function:
hk) = z
where kis a key of arbitrary type and z € Zo*,

then we could construct another function:

int index(K key) {
return hkey) % A.length;

}

A 13 2 451 | 42 9 6 -4 8

Joe Adam Sue Ed Sam Fay Dan Ted

Hash function

A hash function is any function that can be used to map data
of arbitrary size onto data of a fixed size.

A 13 2 451 | 42 9 6 -4 8

Joe Adam Sue Sam Fay Dan Ted

Strlng of length 2.

String of length 3.
String of length 4.

Why not “Benedict Cumberbatch”?

Hash table

A hash table is a data structure that implements the map
abstract data type. A hash table uses a hash function to
compute an index into an array of buckets, from which the
desired value can be found.

llDanII’ _4
index(“Dan”) - 6

A[index(“Dan”)] = -4

Hash function
Hash functions must also provide the following guarantees:

Determinism: a given input value must always generate the
same hash value.

Uniformity: maps the expected inputs as evenly as possible
over its output range.

Equivalence: any two values that are considered equivalent
should produce the same hash value.

Question
Is a function that generates a random
number a good hash function?

No. Random numbers do tend to be
uniform, but are not deterministic.

Activity

See if you can come up with a simple hash function for
strings.

Determinism: a given input value must always generate the
same hash value.

Uniformity: maps the expected inputs as evenly as possible
over its output range.

Equivalence: any two values that are considered equivalent
should produce the same hash value.

American Standard Code for Information Interchange
(ASCII)

Dec HxOct Char Dec Hx Oct Html Chr |Dec Hx Oct Html Chr| Dec Hx Oct Html Chr
0 0000 NUL {null) 32 20 040 Space| 64 40 100 @ € | 96 60 140 `
1 1001 50H (start of heading) 33 21 041 ! ! 65 41 101 A & | 97 61 141 a: 2
2 2002 STX (start of text) 34 22 042 66 42 102 «#66; B | 98 62 142 «#98; b
3 3 003 ETX (end of text) 35 23 043 67 43 103 C C | 99 63 143 c ©
4 4004 EOT (end of transmission) 36 24 044 68 44 104 «#68; D (100 64 144 &f100; d
5 5005 ENQ (enquiry) 37 25 045 69 45 105 c#69; E 101 65 145 e &
6 6 006 ACK (acknowledge) 38 26 046 70 46 106 «#70; F (102 66 146 f £
7 7 007 BEL {bell) 39 27 047 71 47 107 G G (103 67 147 &$103; ¢
8 8 010 BS (backspace) 40 28 050 72 48 110 H H 104 68 150 «#104; h
9 9 0Ll TAB {horizontal tab) 4l 29 051 73 49 111 I I [105 69 151 i 1
10 A 012 LF (NL line feed, new line)| 42 24 052 74 44 112 #74; 7 [106 6A 152 #106; J
11 B 013 VT (vertical tab) 43 2B 053 75 4B 113 K K 153 6#107; k
12 C 014 FF (NP form feed, nev page)| 44 2C 054 76 AC 114 #76; L 154 s#108; 1
13 D 015 CR (carriage return) 45 2D 055 77 4D 115 M 1 155 m 1
14 E 016 50 (shift out) 46 2E 056 78 4E 116 #78; 1 156 n 1
15 F 017 T (shift in) 47 2F 057 79 4F 117 «#79; 0 157 &#lll; ©
16 10 020 DLE {data link escape) 48 30 060 80 50 120 P P 160 p D
17 11 021 DCL {device control 1) 49 31 061 81 51 121 «#81; 0 161 q
18 12 022 DCZ (device control 2) 50 32 062 82 52 122 #82; R 162 r ©
19 13 023 DC3 (device control 3) 51 33 063 83 53 123 S 5 163 s#115; 5
20 14 024 DC4 (device control 4) 52 34 064 84 54 124 «#84; T 164 s#116; ©
21 15 025 NAK (negative acknowledge) | 53 35 065 85 55 125 «#85; U 165 u u
22 16 026 SYN (synchronous idle) 54 36 066 86 56 126 «#86; V 166 s#118; v
23 17 027 ETE (end of trans. block) 55 37 067 87 57 127 W U 167 w
24 18 030 CAN {cancel) 56 38 070 88 58 130 «#88; X 170 x
25 19 031 EM (end of medium) 57 39 071 89 59 131 Y ¥ 171 eflal: ¥
26 1A 032 SUB (substitute) 58 34 072 90 5A 132 «#90; Z 172 z z
27 1B 033 ESC {escape) 59 3B 073 91 SB 133 [[173 { {
28 I1C 034 F5 (file separator) 60 3C 074 92 SC 134 \ \ 174 s#124; |
29 1D 035 G5 (group separator) 61 3D 075 93 SD 135]] 175 })
30 IE 036 RS (record separator) 62 3E 076 94 SE 136 ^ * 176 s#126; ~
31 IF 037 U5 (unit separator) 63 3F 077 95 S5F 137 «#95; 177 DEL

code

Hash codes

Hashing is so important that every object in Java has a
built-in hash function.

hashCode

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by Hashuap.
The general contract of hashCode is:

« Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must
consistently return the same integer, provided no information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same application

 If two objects are equal according to the equals (Object) method, then calling the hashCode method on each of the two objects must
produce the same integer result.

« Itis not required that if two objects are unequal according to the equals (3ava. lang.Object) method, then calling the hashCode
method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct
integer results for unequal objects may improve the performance of hash tables.

As much as is reasonably practical, the hashCode method defined by class object does return distinct integers for distinct objects. (This is
typically implemented by converting the internal address of the object into an integer, but this implementation technique is not required by the
Java™ programming language.)

Returns:
a hash code value for this object.
See Also:

equals(java.lang.Object), System.identityHashCode (java.lang.object)

Hash codes

Good hash functions are already provided for primitives.

Provide one for your own class by overriding hashCode.

hashCode

public int hashCode()

Returns a hash code value for the object. This method is supported for the benefit of hash tables such as those provided by Hashitap.
The general contract of hashCode is:

* Whenever it is invoked on the same object more than once during an execution of a Java application, the hashCode method must
consistently retur the same integer, provided no information used in equals comparisons on the object is modified. This integer need not
remain consistent from one execution of an application to another execution of the same application.

* If two objects are equal according to the equals (Object) method, then calling the hashCode method on each of the two objects must
produce the same integer result.

« lItis not required that if two objects are unequal according to the equals (java. lang.Object) method, then calling the hashcode
method on each of the two objects must produce distinct integer results. However, the programmer should be aware that producing distinct
integer results for unequal objects may improve the performance of hash tables.

Hi

As much as is reasonably practical, the hashCode method defined by class Object does return distinct integers for distinct objects. (This is
typically implemented by converting the interal address of the object into an integer, but this implementation technique s not required by the
Java™ programming language.)

Returns:
a hash code value for this object.
See Also:

equals(java.lang.Object), System.identityHashCode (java.lang.Object)

Recap & Next Class

Today:

Hash tables
Is our simple hash function actually good? Hash functions

Next class:
Collisions

Graphs

