
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Kelly Shaw

Lecture 26
Maps

Topics

Tree Big-O

Map interface

Tree backed map

Your to-dos

1. Read before Wed: Bailey, Ch 15.4.
2. Lab 8 (solo lab), due Tuesday 11/15 by 10pm.
3. Quiz, due Saturday evening.

Recall: binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be ≥ any key stored in the left subtree, and
• must be < any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Tree balance

In the worst case, how long does it take to find an element
in this binary search tree?

e

g

b

a w

s

h

Suppose it is the letter a .

In the worst case, how long does it take to find an element
in this binary search tree?

ea w

s

h

Suppose it is the letter a .

Finding a takes two steps.

g

b

Finding s takes one step.

In the worst case, how long does it take to find an element
in this binary search tree?

ea w

s

h

Suppose it is the letter s .

b

g

In the worst case, how long does it take to find an element
in this binary search tree?

ea wh

b

In the worst case, the time depends on the length of the
longest path.

g

s

e

c

Suppose a friend gives you the following sequence of
values: [a,b,c,d,e,f,g]

And asks you to store them in a binary tree to “make
accessing them fast.”

Is access guaranteed to be fast?

a

b

d

f

g

Ouch!!!

Worst
case: O(n)

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

isBalanced(t):

t is balanced if and only if
•t is empty, or
• all of the following
•isBalanced(t.left) is true and
•isBalanced(t.right) is true and
• | height(t.left) - height(t.right) | ≤ 1

Keep in mind: we know that the worst case has something to
do with height.

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Clearly a balanced tree.
Yeah, sure, there’s no tree. Details, details…
Time to access an element ~ 0 steps

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element ~ 0 steps

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b

g

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.

Max time to access an element: 1 step

b s

g

Changes nothing.

a

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

e wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

he wa

But what if your tree maintained the following property on
insertion? (i.e., it is always true)

Balanced? Yes.
Max time to access an element: 2 steps

b s

g

This looks like time = log2(# nodes)

nodes max time

1 0 steps
2 1 step
3 1 step
4 2 steps
5 2 steps
6 2 steps
7 2 steps
8 3 steps

… …

But does this hold up?

Clearly not a balanced tree.

e

c

a

b

d

f

g

nodes max time

7 6 steps

Logarithmic worst-case access time has something to do
with the compactness of a tree; height matters.

BST Big-O

Worst case time is O(log2(n)) for a balanced binary tree.

Why?

What is min. binary tree height needed to store n nodes?

Cute theorem: height ≥ ⌊log2(n)⌋

Intuition: log2(n) is the number of times you can divide n
nodes in halves.

1

2

3

Maps

Map ADT

A map (also known as a dictionary, associative array, or
key-value store) is an abstract data type that stores a
collection of (key, value) pairs. Each key appears at most
once in a collection. Maps support lookup, insert, and
remove operations.

More formally, a map is a function with a finite domain.

Map ADT (intuition)

key value

Dan
Jeannie

Bill J
Iris

Sam

C
A
B
A

A+

You’ve seen something like this before (hint: SymbolTable)

structure5 Map interface

(I omitted some methods— see structure5 docs)

structure5’s only Map implementation

What’s the problem with this implementation?

Let’s create a tree-backed Map

But first: how will it perform?

Recap & Next Class

Today:

Next class:
Hash tables

Collisions

Map interface

Tree backed map

