
CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 23
Trees, part 3

Topics

Tree terminology

Your to-dos

1. Read before Fri: review Bailey, Ch 14.

2. Lab 8 (solo lab), due Tuesday 11/15 by 10pm. 

Note: you will implement a tree data structure
called a trie for lab 8; the structure is described in
the lab handout. Please bring a short design
document to your lab meeting.

The height of a tree is the length of the longest path
between the root and any leaf.

Height of tree = 2

Activity: Binary Tree Height

Let’s think about some corner cases.

Height of tree = 0

Binary Tree Height

What is the height of a tree with just one node?

The height of a tree is the length of the longest path
between the root and any leaf.

Let’s think about some corner cases.

Height of tree = -1

Binary Tree Height

What about the empty tree?

The height of a tree is the length of the longest path
between the root and any leaf.

Here’s a more formal definition.

Binary Tree Height

The height of a tree is defined as:

• -1 if the tree is empty, or

• height(left) or height(right), whichever is bigger, + 1

empty tree: -1

just a root: 0

any other tree: longest path

How might we implement getHeight()?

Activity: Binary Tree Height

Height

1

2 4

^

-

×

2

1 - 24 × 2

Binary tree traversals

Binary tree traversals

Suppose you are asked to write an Iterator<T> for a
binary tree. What order do you choose?

Remember that tree nodes store data (T). A traversal
corresponds with the order that data is returned.

a

b c

d e f g

Binary tree traversals

Pre-order traversal: Return data from each node before its
children, and then return child data from left to right.

a

b c

d e f g

1

2

3 4

5

6 7

Returns the sequence: a, b, d, e, c, f, g

Binary tree traversals

In-order traversal: Return data from each node after its left
child and before its right child.

a

b c

d e f g1

2

3

4

5

6

7

Returns the sequence: d, b, e, a, f, c, g

Binary tree traversals

Post-order traversal: Return data from each node after its
children; return child data from left to right.

a

b c

d e f g1 2

3

4 5

6

7

Returns the sequence: d, e, b, f, g,c, a

Binary tree traversals

Level-order traversal (aka breadth-first order): Return
data from each node in level i before data in level i+1.

a

b c

d e f g

1

2 3

4 5 6 7

Returns the sequence: a, b, c, d,e,f, g

Level 0

Level 1

Level 2

2 4

Activity: What traversal should I use?

Suppose I encode the arithmetic expression 1 - 24 × 2
using the following tree.

-

1 ×

^ 2

Ordered Trees

Binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be > any key stored in the left subtree, and

• must be ≤ any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Binary search tree (alternative)

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be ≥ any key stored in the left subtree, and

• must be < any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Key, Value nodes

Note that I said key instead of element.

Storing a key and a value in each node allows the greatest
flexibility when arranging a tree. I.e., the key type K need
not be the value type V.

Restriction: keys must be comparable in some way (e.g.,
Comparable<K> or Comparator<K>).

Example
Insert the following elements: 71,20,27,17,91,14,87

Assume K and V are the same.

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

27 27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

8727

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

Activity
Insert the following elements:

Assume K and V are the same.

Let’s start implementing this together.

Binary Search Tree

Tree terminology

Tree traversals

Binary search trees

Recap & Next Class

Today:

Next class:

