
CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 21
More iterators

Topics

•Iterators

•Integer representation

Your to-dos

1. Read before Wed: Bailey, Ch 14-14.1, 14.3

2. Quiz due Sat by 6pm

Announcements

•CS Colloquium this Friday, Nov 4 @ 2:35pm in
Wege Auditorium (TCL 123)

Rachit Nigam (Cornell University)
Programming Support for Hardware Accelerators
Rachit Nigam is a visiting researcher in the PLSE group
at University of Washington and a PhD candidate
studying computer science at Cornell University.

He is a part of the CAPRA and PL@Cornell research
groups and is advised by Adrian Sampson. His research
(Dahlia, Calyx) is focused on building high-level
programming models for designing hardware accelerators.

Nonetheless, we can signal our intent with an interface.

How would we write an OrderedStructure interface?

Recall: OrderedStructure

Do its elements need to have any special property? (i.e.,
how would we compare them?)

Let’s think about how we might implement this.

(code)

Let’s think about implementing an OrderedVector.

OrderedVector

(code)

Integer representation

The bits of an integer

An integer is represented in computer memory as a
sequence of bits, each having a value of either 0 or 1. This
representation is called binary.

Binary is number system where each digit can take one of
two values; i.e., the base of the system is 2.

You are probably more familiar with the base 10 number
system, aka decimal.

Any integer can be represented in either system.

Java int

The int data type in Java has 32 bits.

00000000 00000000 00000000 00010111

is the number 23.

(00000000000000000000000000010111)₂
= (0 × 2³¹) + (0 × 2³⁰) + (0 × 2²⁹) + (0 × 2²⁸)
+ (0 × 2²⁷) + (0 × 2²⁶) + (0 × 2²⁵) + (0 × 2²⁴)
+ (0 × 2²³) + (0 × 2²²) + (0 × 2²¹) + (0 × 2²⁰)
+ (0 × 2¹⁹) + (0 × 2¹⁸) + (0 × 2¹⁷) + (0 × 2¹⁶)
+ (0 × 2¹⁵) + (0 × 2¹⁴) + (0 × 2¹³) + (0 × 2¹²)
+ (0 × 2¹¹) + (0 × 2¹⁰) + (0 × 2⁹) + (0 × 2⁸)
+ (0 × 2⁷) + (0 × 2⁶) + (0 × 2⁵) + (1 × 2⁴)
+ (0 × 2³) + (1 × 2²) + (1 × 2¹) + (1 × 2⁰)
= (23)₁₀

Bitwise Operations

We can use bitwise operations to manipulate
the 1s and 0s in the binary representation
• Bitwise ‘and’: &
• Bitwise ‘or’: |

Also useful: bit shifts
• Bit shift left: <<
• Bit shift right: >>

Given two integers a and b, the bitwise or
expression a | b returns an integer s.t.

• At each bit position, the result has a 1 if that bit
position had a 1 in EITHER a OR b
• 3 | 6 = ?

& and |

011 | 110 = 111

Given two integers a and b, the bitwise and
expression a & b returns an integer s.t.

• At each bit position, the result has a 1 if that bit
position had a 1 in BOTH a AND b
• 3 & 6 = ?

011 & 110 = 010

Given two integers a and i, the expression
(a << i) returns (a * 2i)

• Why? It shifts all bits left by i positions
• 1 << 4 = ?

>> and <<

00001 << 4 = 10000
Given two integers a and i, the expression
(a >> i) returns (a / 2i)

• Why? It shifts all bits right by i positions
• 1 >> 4 = ?

00001 >> 4 = 00000

• 97 >> 3 = ?

1100001 >> 3 = 1100

Iterators

Recall: Iteration

Iteration is the repetition of a process in order to generate
a (possibly unbounded) sequence of outcomes. Each
repetition of the process is a single iteration, and the
outcome of each iteration is then the starting point of the
next iteration.

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

sum 0

100 101 102 Ø

d 0

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 0

d 0

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 100

d 100

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 100

d 100

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 201

d 101

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 201

d 101

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 303

d 102
Ø

Example: Iteration with an Iterator

List<Double> ls = new SinglyLinkedList<>();

// … initialize ls …

double sum = 0.0;

for (double d : ls) {

sum += d;

}

head

100 101 102 Ø

current

Iterable<Double>

sum 303

d 102
Ø

Iteration is terminated!

Example: Iteration with an Iterator

What’s an Iterator<T>?

It’s a stateful object that lets you

iterate through a data structure.

public interface Iterator<E>

{

 boolean hasNext();

 E next();

 …

}

A bit iterator
Suppose we want to do the following:

On each iteration, get the next most significant bit, starting
initially with the least significant bit.

BIterator to the rescue.

Note that we’re showing you this in the hope that it will
serve as inspiration for Lab 7— however, the iterator you
need to write for Lab 7 will be different.

(code)

Iterators

Number representations

Tree ADT

Recap & Next Class

Today:

Next class:

