
Preconditions for True Fun

• “You must be present and undistracted in order to have fun, because flow is a
foundational element of fun, and flow requires total absorption.”

• “If you feel judged, either by yourself or by someone else, you will not be able to have
fun. Likewise, it’s difficult to have fun if you feel like the other people around you
aren’t also having fun, or if there’s a wet blanket or spoilsport present.”

• “You (and your companions) must be fully invested in and connected with the activity
or people you’re with (or both).”

• “When the stakes are too high, the fun runs away.”

• “… it is remarkable how consistently members of the Fun Squad mentioned other
people when they reminisced about times that were truly fun – even if they were self-
described introverts.”

 -- The Power of Fun: How to Feel Alive Again by Price

CSCI 136:

Data Structures

and

Advanced Programming

Instructor: Kelly Shaw

Lecture 17
Linear structures, part 2

Topics

•Stack data structure

•Queue ADT

•Queue data structure

•Resubmission procedure

Your to-dos

1. Lab 6 (partner lab), due Tuesday 11/1 by 10pm. 
(two weeks!)

2. Read before Fri: Bailey, Ch 8-8.3.

Announcements
•Colloquium: What I Did Last Summer (Research),
2:35pm in Wege Auditorium with cookies.

•Practice midterm posted on the course website.

•Bring questions to class on Monday for review!

•TA feedback.

Announcements

Please consider being a TA next semester 
(especially for this class!) 

 
Applications due Friday, October 28. 

 
https://csci.williams.edu/tatutor-application/

Stack ADT Stack ADT

A stack is an abstract data type that stores a collection of
any type of element. A stack restricts which elements
are accessible: elements may only be added and removed
from the "top" of the collection. The "push" operation
places an element onto the top of the stack while a "pop"
operation removes an element from the top.

Stack implementations

StackArray

A StackArray is a stack implemented using an array for
element storage.

Pros: push and pop are O() operations.

Cons:

1

data structure has a maximum capacity.

Stack implementations
StackVector

A StackVector is a stack implemented using a Vector for
element storage.

Pros: push and pop are amortized O(1) operations. There is
no maximum capacity.

Cons: Most of the time, ops take O(1) time, but occasionally--
when the underlying array needs to grow--an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice.
Also, unless the underlying array is completely full, Vectors
waste some space.

Stack implementations
StackList

A StackList is a stack implemented using a List (usu. SLL)
for element storage.

Pros: push and pop are O(1) operations. There is no
maximum capacity, and no wasted space. push and pop
costs are predictable (always the same), unlike StackVector.

Cons: because of the way computer hardware is
implemented, a StackList's constant-time cost is likely to be
much higher than a StackVector's. So a StackList's
performance may be more predictable than a StackVector,
but it will likely be slower on average.

Let’s look at StackList

Uses an SLL 
for storage.

Uses an SLL 
for storage.

Adding 
an element

puts it at the
front of the list.

Uses an SLL 
for storage.

Adding 
an element

puts it at the
front of the list.

Wait! What
about push?

push just
calls add.

push just
calls add.

pop just
calls remove.

Uses an SLL 
for storage.

Adding 
an element

puts it at the
front of the list.Removing

an element
removes
the first

element in
the list.

Queue ADT

A queue is an abstract data type that stores a collection of
any type of element. A queue restricts which elements
are accessible: elements may only be added to the "end" of
the collection and elements may only be removed from the
"front" of a collection. The "enqueue" operation places an
element at the end of a queue while a "dequeue" operation
removes an element from the front.

Queue ADT Queue ADT

Also sometimes referred to as a FIFO: “first in, first out.”

We also frequently include a "peek" operation that lets us
look at an element on the top of a queue without removing it,
and "size" and “isEmpty" operations that let us check how
many elements are stored and whether a queue stores zero
elements, respectively.

(a stack would be an annoying way to process a line at
Starbucks!)

Frequently used as a buffer to hold work to do later.

Queue implementations

QueueArray

A QueueArray is a queue implemented using an array for
element storage.

Pros: enqueue and dequeue are O() operations.

Cons:

1

data structure has a maximum capacity.

Queue implementations
QueueVector

A QueueVector is a queue implemented using a Vector for
element storage.

Pros: enqueue and dequeue are amortized O(1) operations.
There is no maximum capacity.

Cons: Most of the time, they take O(1) time, but occasionally--
when the underlying array needs to grow--an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice. Also, unless the underlying array is completely full,
Vectors waste some space.

Queue implementations
QueueList

A QueueList is a queue implemented using a List (usu. DLL
or CL) for element storage.

Pros: enqueue and dequeue are O(1) operations. There is no
maximum capacity. enqueue and dequeue costs are
predictable (always the same), unlike QueueVector.

Cons: because of the way computer hardware is
implemented, a QueueList's constant-time cost is likely to be
much higher than a QueueVector's. So a QueueList's
performance may be more predictable than a QueueVector,
but it will likely be slower on average.

Other queue-like ADTs

One very useful and interesting variant of the Queue ADT is
the Priority Queue ADT. We’ll talk about priority queues after
the midterm!

Resubmission procedure

Resubmission procedure

Remember: the goal of this

course is mastery.

Allows you to earn up to 50%

of the lost points.

E.g., if you got a 50% on the midterm,

you can get a 75% on resubmission.

Midterm is 25% of your final grade.

This is worth doing!

Resubmission procedure

1. You have until the end of
reading period.

2. Resubmission must include
both the original work and the
new submission.

3. Must be accompanied by an
explanation document, written
in plain English.

Resubmission procedure

1. What the mistake is.

2. How you fixed the mistake.

3. Why the new version is correct.

Resubmission procedure

Explanation document must identify:

Resubmission procedure

Resubmit code electronically

(i.e., using git).

Resubmit exam on paper

(i.e., hand it to me or put in mailbox).

Resubmission procedure
Sample from CS334:

