CSCI 136:
Data Structures
and
Advanced Programming

Lecture 16

Linear structures

Instructor: Kelly Shaw
Williams

Topics

*Quicksort
*Linear ADTs
«Stack ADT

Your to-dos

1. Lab 6 (partner lab), due Tuesday 11/1 by 10pm.

(two weeks!)
2. Read before Fri: Bailey, Ch 8-8.3.

Announcements

*Colloquium: What I Did Last Summer (Industry),
2:35pm in Wege Auditorium with cookies.

*Midterm: in lab two weeks from now:
Wed, October 26 and
Thu, October 27 and

*Midterm review: Mon, October 24 in class.
*No class: Fri, October 28.

Revisiting Mergesort Time Complexity

Quicksort

Quicksort is a sorting algorithm that uses the divide and
conquer technique. It works by partitioning the data into two
arrays around a pivot (a fixed element, like the first
element).

It swaps data so that one array contains elements smaller
than the pivot and the other array contains elements
larger than the pivot. This ensures that, at each step, the
pivot is in the correct position in the array.

Performing this procedure recursively on the left and right
subarrays until there is nothing left to partition guarantees a
sorted array.

Quicksort partition step

[402 1433650 -1583 42 4]
left/ \
[4 2 1433 65 0 -1583 4240
[4 2 10403 65 0 -158 3 42 43]
[4 2 13 365 0 -1 5840 4 4]
7 '
[4 2 1 3 340 0 -1 58 65 42 43]
7
[4 2 1 3 3 -1 04058 65 42 43]
[4 2 1 3 3 -1 o040]ss 65 42 43]

left

right

right

Quicksort recursive steps

Q®21433650—1583424>
partition
()2 1 3 3 -1 0fa0[58)65 42 43]
02 1 3 3 -1]4] | [43)]ss]es
CEL 7| |
"o
ot

\l
-1 0 1 2 3 3 4 40 42 43 58 65

Quicksort

Unlike merge sort, quick sort does not need to combine
sub arrays after splitting—the entire array is
guaranteed to be sorted upon reaching the base
case, and since the sort is done in-place no copying is
required.

Base case (array of size 1): the pivot is trivially sorted.

Inductive case: Assume that the left and right subarrays are
sorted. Since the pivot is the middlemost element, then
everything to the left is smaller and everything to the right is
bigger. Therefore, the entire array is sorted.

Quicksort

Quicksort takes O(n2) time in the worst case. This case is
improbable, and highly improbable as n—o.

Quicksort takes O(n log n) time in the best case.
Quicksort takes O(n log n) time in the average case.

l.e., quicksort is an in-place sort. Therefore it needs no
auxiliary space. As a result, quicksort is almost always
chosen over merge sort in any application where all the
data can fit into RAM.

Quicksort time proof sketch
In the worst case, we repeatedly choose the worst pivot

(either the min or max value in the array). This means that
the array shrinks by 1 on every call to partition, so we need
to do n partitions, doing one fewer comparison on each
partition. This is the sum of 1 to n. O(n2).

In the best case, we always happen to choose the
middlemost value as a pivot. l.e., the two subarrays are the
same size. The rest of the proof looks just like the proof for
merge sort where we intentionally choose two subarrays of
the same size.

If you're thinking that quicksort’s best case is the same as
merge sort’s worst case, remember that quicksort is in-
place.

Sorting Wrapup

Time Space
Bubble Worst: O(n2) O(n):n+c
Best: O(n) - if “optimized”
Insertion Worst: O(n2) O(n):n+c
Best: O(n)
Selection Worst = Best: O(n2) O(n):n+c

Merge Worst = Best: O(n log n) O(n) :2n + ¢

Quick Average = Best: O(n log n) O(n):n+c
Worst: O(n2)

Recap & Next Class

Today:

- Sort stability
*Merge sort
*Quick sort

Next class:

*Linear structures

Recall: Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of data
structures (e.g., implementation details, programming
language). Instead, ADTs contain only essential properties
and are concisely defined by their logical behavior over a
set of values and a set of operations.

In an ADT, precisely how data is represented on a computer
does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on a
computer matters a lot. Simple data structures are often
composed of simple representations, like primitives, while
more complex data structures are composed of other data
structures.

ADT example: List

A list is a sequential collection of data elements, whose
order is not necessarily given by their placement in memory.
Elements may store any type of value. A list supports
inserting, searching for, and deleting any value in a list, at
any location, although not necessarily efficiently.

Linear ADT

A linear ADT is one that presents elements in a sequence,
even if the elements are not actually stored that way.

In a linear ADT, adding and removing elements is

constrained, meaning that the structure can only be
inspected and modified according to certain rules.

We will talk about two this week: stack and queue.

Stack ADT

A stack is an abstract data type that stores a collection of
any type of element. A stack restricts which elements
are accessible: elements may only be added and removed
from the "top" of the collection. The "push" operation
places an element onto the top of the stack while a "pop"
operation removes an element from the top.

Stack ADT

Stack ADT

Also sometimes referred to as a LIFO: “last in, first out.”

We also sometimes include a "peek" operation that lets us
look at an element on the top of a stack without removing it,
and "size" and “isEmpty" operations that let us check how
many elements are stored and whether a stack stores zero
elements, respectively.

Stack ADT

Interesting history: first
appeared in print in a paper
by Alan Turing (19486).

Unclear if he actually
invented it.

push = bury,
pop = unbury.

structure5 Stack implementations

‘ Interface ‘ ‘ Abstract Class ‘

Linear

AbstractStructure

AbstractList AbstractLinear

Vector ‘ ‘ SinglyLinkedList ‘ ‘ DoublyLinkedList ‘ ‘AbstractStackHAbstractQueue‘

‘StackArray‘ ‘ StackList ‘ ‘ StackVector ‘

Application: Arithmetic

A computer can perform arithmetic using a stack.
Eg.,1+2*3=7

Small problem: order of operations in infix arithmetic
depends on the operations themselves.

In postfix arithmetic, order is always the same: left to right
Eg.,123*+

Once in this form, processing is easy. (Example)

Activity: Arithmetic
Convert infix to postfix: x*y+z*w

1. Add parens to preserve order of operations:
((x *y) + (z *w))
2. Move all operators to the end of each parenthesized
expression:
((xy *)(z w *) +)
3. Remove parens:
Xy *zw* +

Evaluate these using a stack:
.4+ 1 * 8
.5 * (6 +2) - 12 / 4

Cool application: function evaluation . :
PP Cool application: backtracking search
bl n =20 class Meowww {
public static String wwow(int n) {
if (n == 0) {
—_— return "wow";
wwow n =1 }
if (n == 1) {
return "w";
}
WwwWow n = 2 return wwow (n-1) + wwow(n-2);
}
public static String meowww (int n) {
n =3 return "meo" + wwow(n);
meowww)
public static void main(String[] args) {
. int n = Integer.valueOf (args[0]);
main System.out.println (meowww (n)) ;
}
}
Call stack
Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: @ Dead end: @ Decision point: @ Dead end: ®
° I ° oI ° I °
° ° ° °
1 e J|e I =] e o I
° ° ° °
— — . — — .
° °
I > I :
) °
° [
straight
Turn stack Turn stack

Search strategy: straight, left, right
Decision point: ® Dead end: ®

Search strategy: straight, left, right
Decision point: ® Dead end: @

straight
straight
Turn stack
Search strategy: straight, left, right
Decision point: @ Dead end: @
° I Lo I
[J o
= i_ [} I []
° °
°
o
°
[}
L4 left
straight

Turn stack

[] []
_ _ [)
[}
[J
o
[J
straight
Turn stack
Search strategy: straight, left, right
Decision point: ® Dead end: @
straight
left
straight
Turn stack

Search strategy: straight, left, right
Decision point: ® Dead end: ®

Search strategy: straight, left, right
Decision point: ® Dead end: @

[J [J
[[}

[]

[]
[J

L left
straight
Turn stack
Search strategy: straight, left, right
Decision point: @ Dead end: @
°l

L* r .

= [] = [} []
° °

. .

o

°
[}

L4 left
straight

Turn stack

left
left
straight
Turn stack
Search strategy: straight, left, right
Decision point: ® Dead end: @
DR I N f——
o [J
] [}] [] I [}
° °
°
[J
| o
[}
right
° left
straight
Turn stack

Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: ® Dead end: ® Decision point: ® Dead end: @
— T T= — =
[} [J [} [J
— — v — — v
o [J I [] [J o I [J
[] [J [] [] l
[[} _ _ [)
straight
° °
° straight ° ﬁ straight
[J o
right right
L left left
straight straight
Turn stack Turn stack
Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: @ Dead end: @ Decision point: @ Dead end: ®
— T T= — =
[J @ o [J
—_— ; —_— v —_— —_— v
[] [} I [] [} [] I [} ©
Y ° ° ° o
e . . — — .
left
o [J
° straight I) straight
[} o [} [}
right right
L4 left ° left
straight straight
Turn stack Turn stack

Search strategy: straight, left, right
Decision point: ® Dead end: ®

Search strategy: straight, left, right
Decision point: ® Dead end: @

° °
°
°
° straight
°
right
L left
straight
Turn stack

Search strategy: straight, left, right
Decision point: @ Dead end: @

62

° °
I =
° [
— [1i= = v
[° straight
J |1
W right
[] -
° straight
°
right
o left
straight

Turn stack

[] []
[)
right
°
° straight
o
right
° left
straight
Turn stack
Search strategy: straight, left, right
Decision point: ® Dead end: @
‘l—
[J
— —. l_ :
° °
°
right
[J
I [straight
[}
right
° left
straight
Turn stack

Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: ® Dead end: ® Decision point: ® Dead end: @

— ! R ° I— ! Jam— s JR— N I_ :
[° m left] °
[[[} b v _ _ [)
right right
° °
° straight ° straight
[J o
right right
L left ° left
straight straight
Turn stack Turn stack
Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: @ Dead end: @ Decision point: @ Dead end: ®
— = — T [=
% = v ¢ = v
[] = [} r.] [}] [] r.
°) right ° °
° X (4 .
right right
o [J
I ° straight I [straight
[} [}
right right
L4 left ° left
straight straight
Turn stack Turn stack

Search strategy: straight, left, right
Decision point: ® Dead end: ®

Search strategy: straight, left, right
Decision point: ® Dead end: @

6

R=

o

° °
°
°
° straight
°
right
L left
straight
Turn stack

Search strategy: straight, left, right
Decision point: @ Dead end: @

62

‘l—
; °
— T—. I_ .
° °
°
°
°
°
right
o left
straight

Turn stack

° right
o
right
° left
straight
Turn stack
Search strategy: straight, left, right
Decision point: ® Dead end: @
°l
; [J
— —. l_ R
° °
°
[J
| o
[}
° left
straight
Turn stack

Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: ® Dead end: ® Decision point: ® Dead end: @
c 1 1/l
[} L.
— e IR I_
[J [J
[[}
[]
| o
[J
° right
straight straight
Turn stack Turn stack
Search strategy: straight, left, right Search strategy: straight, left, right
Decision point: @ Dead end: @ Decision point: @ Dead end: ®
° l ° I ° I of e I
[J L. o o [J [J
= [] = [} I []] [}] [] I [}
° ° ° °
[° B °
o [J
° °
[} [}
° °
straight
Turn stack Turn stack

Search strategy: straight, left, right
Decision point: @ Dead end: @

Search strategy: straight, left, right
Decision point: ® Dead end: ®

Turn stack

left
Turn stack
Search strategy: straight, left, right
Decision point: @ Dead end: @
IR
OAJ_ o o
= [] = [] I []
° °
- .
o
| o
[}
°
right

Turn stack

Search strategy: straight, left, right
Decision point: ® Dead end: @

right

Turn stack

Stack implementation

Stack data structures

StackArray

A StackArray is a stack implemented using an array for
element storage.

Pros: push and pop are O(1) operations.

Cons: data structure has a maximum capacity.

Stack data structures
StackVector

A StackVector is a stack implemented using a Vector for
element storage.

Pros: push and pop are amortized O(1) operations. There is
no maximum capacity.

Cons: Most of the time, ops take O(1) time, but occasionally
(when the underlying array needs to grow) an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice.

Also, unless the underlying array is completely full, Vectors
waste some space.

Stack data structures
StackList

A StackList is a stack implemented using a List (usu. SLL)
for element storage.

Pros: push and pop are O(1) operations. There is no
maximum capacity, and no wasted space. push and pop
costs are predictable (always the same), unlike StackVector.

Cons: because of the way computer hardware is
implemented, a StackList's constant-time cost is likely to be
much higher than a StackVector's. So a StackList's
performance may be more predictable than a StackVector,
but it will likely be slower on average.

Let’s look at StackList

package structures;
import java.util.Iterator;

public class StackList<E> extends AbstractStacl

protected List<E> data;

public StackList() {
data = new SinglyLinkedList<

public void clear() {
data.clear();

public boolean empty() {

return data.isEmpty();

¥

public Iterator<E> iterator() {
return data.iterator();
}

public E get() {
return data.getFirst();

public void add(E value) {
data.addFirst(value);
}

public E remove() {
return dat emoveFirst();

public String toString() {
return "<StackLi +data+"

}

Uses an SLL
for storage.

kage structure5;
ort java.util.Iterator;

public class Sta st<E> extends AbstractStack<E> implements Staci
{

protected List<E> data;

public StackList() {
data SinglyLinkedList<E>();
¥

public void cle;
data.clear();
+

public boolean empty() {
return data.isEmpty();
}

public Iterator<E> iterator() {
urn data.iterator();

public E get() {
return data.getFirst();

+

public void add(E value) {
data.addFirst(value);

public E remove() {

return data. removeFirst();
3
¥

public int size() {
return data.size(

¥

public String toString() {
return - ist: "+data+'>"

Uses an SLL
for storage.

package structures;
import java.util.Iterator;

public class StackList<E> extends AbstractStaci
{

protected List<E> data;

public StackList() {
data = new SinglyLinkedList<E>();

public void clear() {
data.clear();

¥

public boolean empty() {
return data.isEmpty();
3
public Iterator<E> iterator() {
irn data.iterator();

public E get() {
return data.getFirst();
}

public void add(E value) {
data.addFirst(value);

public E remove() {

return data.removeFirst();

¥

public int size() {
return data.size();

}

public String toString() {
return "<StackLis +data+

implements Stack<

Adding
an element
puts it at the
front of the list.

Uses an SLL
for storage.

structure!
t java.util.Iterator;
public class StackList<E> extends Abstrac implements Stac

protected Lis data;

public StackList() {
data = new SinglyLinkedList<E>();

+

public void clear() {
data.clear();

public boolean empty() {
return data.isEmpty();

3

b

public Iterator<E> iterator() {
return data. iterator();

Adding
an element
puts it at the

front of the list.

}
public E get() {

return data.getFirst();
¥

public void add(E value)
data.addFirst(value);
+

Wait! What
about push?

public E remo
return data. removeFirst();
}

public int size() {
urn data.size();

public String toString() {

return A

push just
calls add.

p structures;

public abstract class Abstrac
{

public void push(E item)
{

add(item);
¥

public E pop()
{
return remove();

@eprecated public E getFirst()
{

return get();
}

public E peek()
[
return get();

3

> extends AbstractLinear<E> implements Stac

push just
calls add.

structure5;
public abstract class AbstractStack<E> extends AbstractLinear<E> implements Stack:
{

public void push(E item)

add(item);

public E pop()
{

return remove();
}

@eprecated public &

return get(

public E peek()
{

return get();

pop just
calls remove.

Uses an SLL
for storage.

Removing
an element
removes
the first
element in
the list.

package structures;
import java.util.Iterator;

public class StackList<E> extends AbstractStac
{
protected List<E> data;

public StackList() {
data = new SinglyLinkedList<E>();

public void clear() {
data.clear();

¥

public boolean empty() {
return data.isEmpty();
3
public Iterator<E> iterator() {
irn data.iterator();

public E get() {
return data.getFirst();

}

public void add(E value) {
data.addFirst(value);

public E remove() {

return data.removeFirst();

¥

public int size() {
return data.size();

}

public String toString() {
return "<StackLis +data+

implements Stack

Adding
an element
puts it at the
front of the list.

Recap & Next Class

Today:

Linear ADTs
Stack

Next class:

Queue, etc.

