
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Kelly Shaw

Lecture 16
Linear structures

Topics

•Quicksort
•Linear ADTs
•Stack ADT

Your to-dos

1. Lab 6 (partner lab), due Tuesday 11/1 by 10pm. 
(two weeks!)

2. Read before Fri: Bailey, Ch 8-8.3.

Announcements

•Colloquium: What I Did Last Summer (Industry), 
2:35pm in Wege Auditorium with cookies.

•Midterm: in lab two weeks from now: 
Wed, October 26 and 
Thu, October 27 and

•Midterm review: Mon, October 24 in class.
•No class: Fri, October 28.



Revisiting Mergesort Time Complexity Quicksort
Quicksort is a sorting algorithm that uses the divide and 
conquer technique. It works by partitioning the data into two 
arrays around a pivot (a fixed element, like the first 
element).

Performing this procedure recursively on the left and right 
subarrays until there is nothing left to partition guarantees a 
sorted array.

It swaps data so that one array contains elements smaller 
than the pivot and the other array contains elements 
larger than the pivot. This ensures that, at each step, the 
pivot is in the correct position in the array.

Quicksort partition step Quicksort recursive steps



Quicksort

Base case (array of size 1): the pivot is trivially sorted. 

Unlike merge sort, quick sort does not need to combine 
sub arrays after splitting—the entire array is 
guaranteed to be sorted upon reaching the base 
case, and since the sort is done in-place no copying is 
required.

Inductive case: Assume that the left and right subarrays are 
sorted.  Since the pivot is the middlemost element, then 
everything to the left is smaller and everything to the right is 
bigger.  Therefore, the entire array is sorted.

Quicksort

Quicksort takes O(n2) time in the worst case.  This case is 
improbable, and highly improbable as n→∞.

Quicksort takes O(n log n) time in the best case.

I.e., quicksort is an in-place sort. Therefore it needs no 
auxiliary space. As a result, quicksort is almost always 
chosen over merge sort in any application where all the 
data can fit into RAM.

Quicksort takes O(n log n) time in the average case.

Quicksort time proof sketch
In the worst case, we repeatedly choose the worst pivot 
(either the min or max value in the array).  This means that 
the array shrinks by 1 on every call to partition, so we need 
to do n partitions, doing one fewer comparison on each 
partition.  This is the sum of 1 to n. O(n2).

In the best case, we always happen to choose the 
middlemost value as a pivot. I.e., the two subarrays are the 
same size. The rest of the proof looks just like the proof for 
merge sort where we intentionally choose two subarrays of 
the same size.
If you’re thinking that quicksort’s best case is the same as 
merge sort’s worst case, remember that quicksort is in-
place.

Sorting Wrapup

Time Space
Bubble Worst: O(n2)

Best: O(n) - if  “optimized”
O(n) : n + c

Insertion Worst: O(n2) 
Best: O(n)

O(n) : n + c

Selection Worst = Best: O(n2) O(n) : n + c

Merge Worst = Best: O(n log n) O(n) : 2n + c

Quick Average = Best: O(n log n)
Worst: O(n2)

O(n) : n + c
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Recap & Next Class

•Sort stability
•Merge sort
•Quick sort

Today:

Next class:

•Linear structures

Recall: Abstract Data Type

An abstract data type is a mathematical formulation of a 
data type. ADTs abstract away accidental properties of data 
structures (e.g., implementation details, programming 
language). Instead, ADTs contain only essential properties 
and are concisely defined by their logical behavior over a 
set of values and a set of operations.

In an ADT, precisely how data is represented on a computer 
does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e.,  it 
is an implementation of an ADT.  Generally, data structures 
are designed to efficiently support the logical operations 
described by the ADT.

For data structures, precisely how data is represented on a 
computer matters a lot.  Simple data structures are often 
composed of simple representations, like primitives, while 
more complex data structures are composed of other data 
structures.

ADT example: List

A list is a sequential collection of data elements, whose 
order is not necessarily given by their placement in memory.  
Elements may store any type of value.  A list supports 
inserting, searching for, and deleting any value in a list, at 
any location, although not necessarily efficiently.



Linear ADT

A linear ADT is one that presents elements in a sequence, 
even if the elements are not actually stored that way.

We will talk about two this week: stack and queue.

In a linear ADT, adding and removing elements is 
constrained, meaning that the structure can only be 
inspected and modified according to certain rules.

Stack ADT

A stack is an abstract data type that stores a collection of 
any type of element.  A stack restricts which elements 
are accessible: elements may only be added and removed 
from the "top" of the collection.  The "push" operation 
places an element onto the top of the stack while a "pop" 
operation removes an element from the top.

Stack ADT Stack ADT

Also sometimes referred to as a LIFO: “last in, first out.”

We also sometimes include a "peek" operation that lets us 
look at an element on the top of a stack without removing it, 
and "size" and “isEmpty" operations that let us check how 
many elements are stored and whether a stack stores zero 
elements, respectively.



Stack ADT

Interesting history: first 
appeared in print in a paper 
by Alan Turing (1946).

Unclear i f he actual ly 
invented it.

push = bury,
pop = unbury.

structure5 Stack implementations

Application: Arithmetic

A computer can perform arithmetic using a stack.

E.g., 1 + 2 * 3 = 7

Small problem: order of operations in infix arithmetic 
depends on the operations themselves.

In postfix arithmetic, order is always the same: left to right

E.g., 1 2 3 * + (note: fixed the confusing class example)

Once in this form, processing is easy. (Example)

Activity: Arithmetic
Convert infix to postfix: x*y+z*w

1. Add parens to preserve order of operations:
    ((x * y) + (z * w))
2. Move all operators to the end of each parenthesized 
expression: 
   ((x y *)(z w *) +)
3. Remove parens:
    x y * z w * +

Evaluate these using a stack:

1. 4 + 1 * 8
2. 5 * (6 + 2) - 12 / 4



class Meowww { 
  public static String wwow(int n) { 
    if (n == 0) { 
      return "wow"; 
    } 
    if (n == 1) { 
      return "w"; 
    } 
    return wwow(n-1) + wwow(n-2); 
  } 

  public static String meowww(int n) { 
    return "meo" + wwow(n); 
  } 

  public static void main(String[] args) { 
    int n = Integer.valueOf(args[0]); 
    System.out.println(meowww(n)); 
  } 
}

Call stack

meowww
n = 3

main

Cool application: function evaluation

wwow n = 2

wwow n = 1

wwow n = 0

Cool application: backtracking search
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Stack implementation

Stack data structures

StackArray

A StackArray is a stack implemented using an array for 
element storage.

Pros: push and pop are O(   ) operations.

Cons:

1

data structure has a maximum capacity.

StackVector

A StackVector is a stack implemented using a Vector for 
element storage.

Pros: push and pop are amortized O(1) operations.  There is 
no maximum capacity.

Cons: Most of the time, ops take O(1) time, but occasionally 
(when the underlying array needs to grow) an O(n) cost is 
incurred.  This may be fine for most applications, but if the 
application cannot tolerate wide variation in time, this is a bad 
choice. 
Also, unless the underlying array is completely full, Vectors 
waste some space.

Stack data structures
StackList

A StackList is a stack implemented using a List (usu. SLL) 
for element storage.

Pros: push and pop are O(1) operations.  There is no 
maximum capacity, and no wasted space.  push and pop 
costs are predictable (always the same), unlike StackVector.

Cons: because of the way computer hardware is 
implemented, a StackList's constant-time cost is likely to be 
much higher than a StackVector's.  So a StackList's 
performance may be more predictable than a StackVector, 
but it will likely be slower on average.

Stack data structures



Let’s look at StackList

Uses an SLL 
for storage.

Uses an SLL 
for storage.

Adding 
an element 

puts it at the 
front of the list.



Uses an SLL 
for storage.

Adding 
an element 

puts it at the 
front of the list.

Wait!  What 
about push?

push just 
calls add.

push just 
calls add.

pop just 
calls remove.

Uses an SLL 
for storage.

Adding 
an element 

puts it at the 
front of the list.Removing 

an element 
removes 
the first 

element in 
the list.



Linear ADTs

Stack

Queue, etc.

Recap & Next Class

Today:

Next class:


