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Recall:

Java provides control over abstractness, which we can use
to enforce behavior to varying degrees.

interface — fully abstract
abstract class — partially abstract

class — not abstract

Honkable

Abstract class

An abstract class is a partial implementation, mainly used
as a labor-saving device.

E.g., many List implementations will implement methods
the same way. Why duplicate all that work?

isEmpty () can always be implemented by checking that
size() ==

AbstractHonkable




Inheritance

Inheritance is a mechanism for defining a class in terms of
another class. It is a labor-saving device employed to
reduce code duplication. Inheritance allows programmers
Car, etc. to specify a new implementation while :

1. maintaining the same behavior,
2. reusing code, and
3. extending the functionality of existing software.

How to interpret Javadoc declarations

Generic: any type of element

v

public class Vector<g>

extends AbstractList<E> Sorting a|gOI’itth

implements Cloneable \

Borrows code from AbstractList

Behaves the same as Cloneable




Sorting algorithm

A sorting algorithm is a procedure for transforming an
unordered set of data into an ordered sequence.

A comparison sorting algorithm takes as input a set S and
a binary relation < that defines an ordering on S.

Example order

Example: lexicographical order (aka, “dictionary order”):

Given two different sequences of the same length,
aiaz...ax and bibs...byx the first one is “less than” the
second one for the lexicographical order, if ai<b;, for the
first i where a; and b; differ.

To compare sequences of different lengths, the shorter
sequence is padded at the end with “blanks."

Lexicographic order is a total order, meaning that there are
no ties. A valid comparison sort only needs to be a weak
order (i.e., ties are OK).

In-place sort

An in-place sort is a sort that takes an unordered set of
elements as an array and modifies (“mutates”) the original
array. Most in-place sort functions return void.

In principle, in-place sorts can be faster than out-of-place
algorithms, since they do not need to copy data.

Tradeoff: make sure that you don’t need the original,
unsorted data!

Bubble sort
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Bubble sort

Bubble sort

Bubble sort is an in-place sorting algorithm in which the
largest element “bubbles up” during each pass. Bubble
sort makes n-1 passes through the data, performing
pairwise comparisons of elements using <.

Bubble sort maintains the invariant (an always-true logical
rule) that the rightmost n-numSorted elements are sorted.

l.e., bubble sort builds a sorted order to the right.

Bubble sort: intuition

Bubble sort as a Hungarian dance.

Observe that two things are happening:
1. a comparison, and
2. a swap.

https://bit.ly/3KoPMDX

Bubble sort algorithm

public static void bubbleSort(int datall, int n)
// pre: 0 <= n <= data.length
// post: values in data[0..n-1] in ascending order
{
int numSorted = 0; // number of values in order
int index; // general index
while (numSorted < n)
{
// bubble a large element to higher array index
for (index = 1; index < n-numSorted; index++)
{
if (datalindex-1] > datalindex])
swap (data,index-1,index);
}
// at least one more value in place
numSorted++;




Recap & Next Class
Today:

*Inheritance
« Comparison sorting

Next class:

*More sorts




