Topics

CSCI 136:
Data Structures
and
Advanced Programming -More inheritance
Lecture 13 +Comparison sorting

Sorting, part 1

Instructor: Dan Barowy

Williams
Your to-dos Announcements
*TA hours over reading period: business as usual
1. Read before Mon: Bailey, Ch 6.4, 6.7-6.9. +Kelly: out of town Monday, Dan will fill in for office
2. Quiz 4, due Saturday by 6pm. hours, but over Zoom. See help calendar for link.
3. Lab 4, due Tuesday 10/11 by 10pm. «Colloquium: What | Did Last Summer (Industry),

2:35pm in Wege Auditorium with cookies.

Recall:

Java provides control over abstractness, which we can use
to enforce behavior to varying degrees.

interface — fully abstract
abstract class — partially abstract

class — not abstract

Honkable

Abstract class

An abstract class is a partial implementation, mainly used
as a labor-saving device.

E.g., many List implementations will implement methods
the same way. Why duplicate all that work?

isEmpty () can always be implemented by checking that
size() ==

AbstractHonkable

Inheritance

Inheritance is a mechanism for defining a class in terms of
another class. It is a labor-saving device employed to
reduce code duplication. Inheritance allows programmers
Car, etc. to specify a new implementation while :

1. maintaining the same behavior,
2. reusing code, and
3. extending the functionality of existing software.

How to interpret Javadoc declarations

Generic: any type of element

v

public class Vector<g>

extends AbstractList<E> Sorting a|gOI’itth

implements Cloneable \

Borrows code from AbstractList

Behaves the same as Cloneable

Sorting algorithm

A sorting algorithm is a procedure for transforming an
unordered set of data into an ordered sequence.

A comparison sorting algorithm takes as input a set S and
a binary relation < that defines an ordering on S.

Example order

Example: lexicographical order (aka, “dictionary order”):

Given two different sequences of the same length,
aiaz...ax and bibs...byx the first one is “less than” the
second one for the lexicographical order, if ai<b;, for the
first i where a; and b; differ.

To compare sequences of different lengths, the shorter
sequence is padded at the end with “blanks."

Lexicographic order is a total order, meaning that there are
no ties. A valid comparison sort only needs to be a weak
order (i.e., ties are OK).

In-place sort

An in-place sort is a sort that takes an unordered set of
elements as an array and modifies (“mutates”) the original
array. Most in-place sort functions return void.

In principle, in-place sorts can be faster than out-of-place
algorithms, since they do not need to copy data.

Tradeoff: make sure that you don’t need the original,
unsorted data!

Bubble sort

6 5 3 18 7 2 4

Bubble sort

Bubble sort

Bubble sort is an in-place sorting algorithm in which the
largest element “bubbles up” during each pass. Bubble
sort makes n-1 passes through the data, performing
pairwise comparisons of elements using <.

Bubble sort maintains the invariant (an always-true logical
rule) that the rightmost n-numSorted elements are sorted.

l.e., bubble sort builds a sorted order to the right.

Bubble sort: intuition

Bubble sort as a Hungarian dance.

Observe that two things are happening:
1. a comparison, and
2. a swap.

https://bit.ly/3KoPMDX

Bubble sort algorithm

public static void bubbleSort(int datall, int n)
// pre: 0 <= n <= data.length
// post: values in data[0..n-1] in ascending order
{
int numSorted = 0; // number of values in order
int index; // general index
while (numSorted < n)
{
// bubble a large element to higher array index
for (index = 1; index < n-numSorted; index++)
{
if (datalindex-1] > datalindex])
swap (data,index-1,index);
}
// at least one more value in place
numSorted++;

Recap & Next Class
Today:

*Inheritance
« Comparison sorting

Next class:

*More sorts

