
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Kelly Shaw

Lecture 9
Recursion

Topics

•Pre/post conditions
•Recursion

Your to-dos

1. Lab 3, due Tuesday 10/4 by 10pm (partner lab!)
2. Read before Fri: Bailey, Ch 3.4–3.5.

Announcements

•Bill Jannen will be your lab instructor for Thursday.
•Masking: still required until further notice.

COOKIES

Announcements

•CS Colloquium this Friday, Sept 30 @ 2:35pm in
Wege Auditorium (TCL 123)

Sonia Roberts (Northeastern University)
Sonia is a postdoctoral research associate working on
soft sensors based on origami and knitted structures
for soft robots at Northeastern University as part of
the Institute for Experiential Robotics.

Sonia’s research focuses on the morphological design
and control of robots, asking questions like how
detailed a model of the environment a robot needs, why
a robot might need legs or wheels for different tasks,
and what the trade-off is between robustness and
plasticity when implementing aspects of a robot's
control using morphology versus actuated degrees of
freedom.

Pre/post conditions

Example

x + 1

What does this operation do?
(i.e., what is our desired result?)

Example

x + 1

Are you sure?

(code)

Example

What should have been true about x?

1. x is an int
2. x < Integer.MAX_VALUE

These examples may seem contrived
but trust me, they are not.

Pre-condition

A pre-condition is a true/false statement (a “predicate”)
that must always be true prior to a code segment (e.g., a
function) being called. If a pre-condition is false, the result
of executing the code is undefined.

Post-condition

A post-condition is a true/false statement (a “predicate”)
that must always be true after a code segment (e.g., a
function) is called assuming that the pre-condition was
true.

Post-condition implications

If a pre-condition is false, there is no guarantee that the
post-condition will be true.

Conversely, if a post-condition is false, then if the pre-
condition is valid, the pre-condition must have been
false.

public static int addOne(int x) {

 int z = x + 1;

 return z;
}

Example, with conditions

 Assert.pre(
 x < Integer.MAX_VALUE,
 "x must be an integer less than MAX_VALUE.");

 Assert.post(z > x, "z must be greater than x.");

• It’s a good idea to put pre- and post-conditions in
comments before your methods

/* @pre 0 ≤ index < length
 * @post returns char at position index
 */
 public char charAt(int index) { … }

Pre/post in comments

• Pre and post conditions form a contract.
• Principle: post-condition is satisfied if pre-

condition is satisfied.
• Examples:

• s.charAt(s.length() - 1): index < length, so valid
• s.charAt(s.length() + 1): index > length, so not valid

• These conditions document requirements
that user of method should satisfy.

• As comments, they are not enforced.

Pre/post conditions

• Pre- and post-condition comments are
useful to a human, but it would be really
helpful to know as soon as a pre-condition is
violated (and return an error)

• The Assert class (in structure5
package) allows us to programmatically
check for pre- and post-conditions

Assert class

Remember: “Assume your code will fail.”

The Assert class contains the static methods
public static void pre(boolean test, String message);

public static void post(boolean test, String message);

public static void condition(boolean test, String message);

public static void fail(String message);

If the boolean test is NOT satisfied, an exception is
raised, the message is printed and the program halts.

Assert class

1. State pre/post conditions in comments
2. Check conditions in code using Assert
3. Use Fail in unexpected cases (such as

the default block of a switch statement)

• Any questions?
• You should use Assert in Lab 3

General guidelines Recursion

Recursion

General problem solving strategy:
• Split big problem into smaller sub-problems.
• Sub-problems may look a lot like original; are often

smaller versions of same problem!
• At least one of these smaller sub-problems is

special: it has a simple solution.

Recursion

Recursion is when a thing is defined in terms of itself.
The most concrete application of recursion in computer
science is when a function is called within its own
definition.

public static int fibonacci(int n){
 if (n == 0){
 return 0;
 }
 if (n == 1){
 return 1;
 }

 return fibonacci(n - 1) +
 fibonacci(n - 2);
}

Recursion: formal structure

• Recursion is a good solution when a problem fits a
basic pattern:

• It has at least one “terminating” rule that does not use
recursion, called the base case.

• It has at least one rule that does use recursion, called
the recursive case. The recursive case should
reduce the problem toward the base case.

We will talk about formal (i.e., “inductive”)
proofs for recursion this week.

• Many algorithms are recursive
• Often easier to understand (and prove

correctness/state efficiency of) than non-recursive
versions!

Recursion

Passing a note (recursively)

What are our base/recursive cases?

• n! = n × (n-1) × (n-2) × … × 1
• How can we implement this?
• We could use a for loop…

int product = 1;

for(int i = 1;i <= n; i++)
product *= i;

• But we could also write it recursively….

Recursion

fact(3)

fact(2)

fact(1)

fact(0)

1

1*1=1

2*1 = 2

3*2 = 6

Graphically…

• n! = n × (n-1) × (n-2) × … × 1
• Work with a partner and see if you can come

up with a recursive solution.

Activity: Factorial

Recap & Next Class

•Pre/post conditions
•Recursion

Today:

Next class:

•Mathematical induction

