CSCI 136:
Data Structures
and
Advanced Programming
Lecture 33
Heapsort
Instructor: Dan Barowy
Williams

Topics
Heapsort
Which data structure?

Announcements

1. Final exam: Saturday, Dec 17, 1:30pm.

Room TBD.
2. Final exam review session, in class, last day of class, Friday 12/9.

Announcements

Amy Babay, University of Pittsburgh
Friday, Dec 9 @ 2:35pm
Computer Science Colloquium - Wege TCL 123
Threats to Critical Infrastructure Control Systems

Amy runs the Resilient Systems and Societies Lab at the University of Pittsburgh School of Computing and Information focusing on dependable infrastructure. The lab's work aims to make the networked systems our society relies on resilient to failures and attacks, and to develop new network technologies that help bring people together.
Amy conducts research on distributed systems and computer networks, aiming to not only fundamentally advance our understanding of how to design and build robust, performan systems that can be relied on to meet their requirements (despite failures and/or attacks), but also develop practica solutions with positive societal impact

Heapsort

Heapsort is an in-place, unstable sorting algorithm that uses a binary min- or max-heap to order elements. The algorithm proceeds by first constructing a heap, then it removes elements one at a time to build a sorted array.

Like bubble sort, heapsort maintains the invariant that the rightmost numSorted elements are sorted. In other words, as elements are removed from the heap, they are inserted into the free space leftover after removal.

Heapsort

Invented in 1963

- Communications of the ACM generously gave the author two columns (glamorously titled "algorithm 232").

Heapsort: example

Suppose we have the following array of values,

and that we want to produce an array in ascending order (i.e., from smallest to largest).

We first construct a max heap and then remove all the elements.
(If sorting in descending order, construct a min heap)

Heapsort: example

Add 5 to the max heap.

Since 5 is smaller than 6, it stays where it is (as the left child of 6).

Heapsort: example

The first element is the new root.

Heapsort: example

Add 3 to the max heap.

Since 3 is smaller than 6, it stays where it is (as the right child of 6).

Heapsort: example

Add 1 to the max heap.

Since 1 is smaller than 5 , it stays where it is (as the left child of 5).

Heapsort: example

Swap 5 and 8.

8 is also not smaller than 6. So we run the "up heap" procedure.

Heapsort: example

Add 8 to the max heap.

8 is not smaller than 5 . So we run the "up heap" procedure.

Heapsort: example

Swap 6 and 8.

Now 8 is in the correct location.

Heapsort: example

Add 7 to the max heap.

7 is not smaller than 3 . So we run the "up heap" procedure.

Heapsort: example

Add 2 to the max heap.

Since 2 is smaller than 7, it stays where it is (as the right child of 7).

Heapsort: example

Swap 3 and 7.

7 is smaller than 8 . So 7 is in the correct location.

Heapsort: example

Add 4 to the max heap.

4 is not smaller than 1. So we run the "up heap" procedure.

Heapsort: example

Swap 1 and 4.

4 is smaller than 6 . So 4 is in the correct location.

Heapsort: example

Swap 1 with 7

Since 1 is not bigger than 3 and 2, run the "down heap" procedure.

Heapsort: example

Extract the max by swapping it with the size-1numsorted ${ }^{\text {th }}$ element.

Since 1 is not bigger than 6 and 7, run the "down heap" procedure.

Heapsort: example

Swap 1 with 3.

Since 1 is now a leaf, we are done swapping.

Heapsort: example

Extract the max by swapping it with the size-1numsorted ${ }^{\text {th }}$ element.

Since 2 is not bigger than 6 and 3 , run the "down heap" procedure.

Heapsort: example

Swap 2 with 6.

Since 2 is not bigger than 4 and 5 , run the "down heap" procedure.

Heapsort: example

Swap 2 with 5

Since 2 is now a leaf, we are done swapping.

Heapsort: example

Extract the max by swapping it with the size-1numsortedth element.

Since 1 is not bigger than 5 and 3 , run the "down heap" procedure.

Heapsort: example

Swap 1 with 5.

Since 1 is not bigger than 4 and 2 , run the "down heap" procedure.

Heapsort: example

Swap 1 with 4.

Since 1 is now a leaf, we are done swapping.

Heapsort: example

Swap 2 with 4.

Since 2 is bigger than 1,2 is in the correct location.

Heapsort: example

Extract the max by swapping it with the size-1numsorted ${ }^{\text {th }}$ element.

Since 1 is not bigger than 2 and 3 , run the "down heap" procedure.

Heapsort: example

Swap 1 with 3.

Since 1 is now a leaf, we are done swapping.

Heapsort: example

Swap 1 with 2

Since 1 is now a leaf, we are done swapping.

Heapsort: example

Extract the max by swapping it with the size-1numsortedth ${ }^{\text {th }}$ element.

But since the heap only contains one element, it must be the max, so...

Heapsort: example

Done.

Activity:
 Which data structure should I choose?

a.) You want to count occurrences of each word in a document then print an alphabetical list of word frequencies.
b.) You are writing code that will be used to store thousands of records (e.g. each record contains all the academic information for a specific student) and to retrieve them using a key (e.g. student name). The data rarely changes.
c.) Assume you are given a collection of pairs as input. Each pair contains the names of two people. Taken together, the pairs describe a social network. Over time, you will add pairs when friendships begin and remove them when friendships end. Data changes frequently At any point in time, you want to be able to find the k most "popular" people.
d.) You want to count the occurrences of each letter in a document, then print an alphabetical list of letter frequencies.

Activity:

Which data structure should I choose?

a.) Two good choices come to mind: hash tables and binary search trees.

Hash table: $O(n \log n)=O(n)$ [to construct] $+O(n \log n)$ [to sort]
BST: $O(n \log n)=O(n \log n)$ [to construct] $+O(n)$ [to extract n sorted elements]
b.) A hash table is the clear winner: $O(n)$ to construct, $O(1)$ to do a lookup.
c.) The most obvious choice is a graph, but this one can have subtle issues.

Suppose we use a matrix to store it. We can add and remove edges in $\mathrm{O}(1)$. We can also maintain the top- k in $\mathrm{O}(\mathrm{k})$ as we add/remove; since k is fixed, it is a constant. However, a matrix may be wasteful of space, if the graph is sparse. For a sparse graph, an adjacency list would use less space, and since the graph is sparse maintaining lists may be relatively inexpensive. A hash table is another interesting option if a good hash function can be found for two people (e.g., hash $(\mathrm{p} 1, \mathrm{p} 2)=\mathrm{p} 1+\mathrm{p} 2$), and sparseness is dealt with naturally by only storing entries where edges exist...
d.) Use an array! We know exactly how many characters there are in an alphabet, and if we restrict ourselves to a single language, that alphabet will be small (e.g., ~26, depending on what you want to count). Printing in alphabetical order is trivial, because the array stored character counts in alphabetical order. $\mathrm{O}(1)$ count, $\mathrm{O}(\mathrm{n})$ print.

Recap \& Next Class

Today:

Heapsort
Which data structure should I choose?

Next class:

Dijkstra's algorithm

