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Heapsort

Topics

Heapsort

Which data structure?

Announcements

1. Final exam: Saturday, Dec 17, 1:30pm. 
Room TBD.

2. Final exam review session, 
in class, last day of class, Friday 12/9.

Your to-dos

1. Lab 10 (partner lab), due Tuesday 12/6 by 
10pm.

2. Review readings from Bailey.
3. Study for the final exam.

a. Pro tip: review quizzes.
b. Do problems in study guide/practice exam.
c. Don’t stress out!  Just be methodical and do 

your best.
4. Work on resubmissions you plan to submit.



Announcements

Friday, Dec 9 @ 2:35pm
Computer Science Colloquium – Wege TCL 123
Threats to Critical Infrastructure Control Systems

Amy Babay, University of Pittsburgh

Amy runs the Resilient Systems and Societies Lab at the 
University of Pittsburgh School of Computing and Information, 
focusing on dependable infrastructure. The lab’s work aims to 
make the networked systems our society relies on resilient to 
failures and attacks, and to develop new network technologies 
that help bring people together.

Amy conducts research on distributed systems and computer 
networks, aiming to not only fundamentally advance our 
understanding of how to design and build robust, performant 
systems that can be relied on to meet their requirements 
(despite failures and/or attacks), but also develop practical 
solutions with positive societal impact.

Heapsort

Heapsort

Heapsort is an in-place, unstable sorting algorithm that 
uses a binary min- or max-heap to order elements.  The 
algorithm proceeds by first constructing a heap, then it 
removes elements one at a time to build a sorted array.

Like bubble sort, heapsort maintains the invariant that the 
rightmost numSorted elements are sorted.  In other words, 
as elements are removed from the heap, they are inserted 
into the free space leftover after removal.

Heapsort
• Invented in 1963.
• Communications of the ACM generously gave the author 

two columns (glamorously titled “algorithm 232”).



Heapsort: example

Suppose we have the following array of values,

and that we want to produce an array in ascending order 
(i.e., from smallest to largest).

We first construct a max heap and then remove all the 
elements.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

(If sorting in descending order, construct a min heap)

Heapsort: example

The first element is the new root.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

left child right child

Heapsort: example

Add 5 to the max heap.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

Since 5 is smaller than 6, it stays where it is (as the left child 
of 6).

left child right child

Heapsort: example

Add 3 to the max heap.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

left child right child

Since 3 is smaller than 6, it stays where it is (as the right 
child of 6).



Heapsort: example

Add 1 to the max heap.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

left child right child

Since 1 is smaller than 5, it stays where it is (as the left child 
of 5).

Heapsort: example

Add 8 to the max heap.

0 1 2 3 4 5 6 7

6 5 3 1 8 7 2 4

left child right child

8 is not smaller than 5.  So we run the “up heap” procedure.

Heapsort: example

Swap 5 and 8.

0 1 2 3 4 5 6 7

6 8 3 1 5 7 2 4

left child right child

8 is also not smaller than 6.  So we run the “up heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

8 6 3 1 5 7 2 4

left child right child

Now 8 is in the correct location.

Swap 6 and 8.



Heapsort: example

0 1 2 3 4 5 6 7

8 6 3 1 5 7 2 4

left child right child

7 is not smaller than 3.  So we run the “up heap” procedure.

Add 7 to the max heap.

Heapsort: example

0 1 2 3 4 5 6 7

8 6 7 1 5 3 2 4

left child right child

7 is smaller than 8.  So 7 is in the correct location.

Swap 3 and 7.

Heapsort: example

0 1 2 3 4 5 6 7

8 6 7 1 5 3 2 4

left child right child

Add 2 to the max heap.

Since 2 is smaller than 7, it stays where it is (as the right 
child of 7).

Heapsort: example

0 1 2 3 4 5 6 7

8 6 7 1 5 3 2 4

left child right child

Add 4 to the max heap.

4 is not smaller than 1.  So we run the “up heap” procedure.



Heapsort: example

0 1 2 3 4 5 6 7

8 6 7 4 5 3 2 1

left child right child

Swap 1 and 4.

4 is smaller than 6.  So 4 is in the correct location.

Heapsort: example

0 1 2 3 4 5 6 7

1 6 7 4 5 3 2 8

left child right child

Since 1 is not bigger than 6 and 7, run the “down heap” 
procedure.

Extract the max by swapping it with the size-1-
numsortedth element.

Heapsort: example

0 1 2 3 4 5 6 7

7 6 1 4 5 3 2 8

left child right child

Swap 1 with 7.

Since 1 is not bigger than 3 and 2, run the “down heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

7 6 3 4 5 1 2 8

left child right child

Swap 1 with 3.

Since 1 is now a leaf, we are done swapping.



Heapsort: example

0 1 2 3 4 5 6 7

2 6 3 4 5 1 7 8

left child right child

Extract the max by swapping it with the size-1-
numsortedth element.

Since 2 is not bigger than 6 and 3, run the “down heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

6 2 3 4 5 1 7 8

left child right child

Swap 2 with 6.

Since 2 is not bigger than 4 and 5, run the “down heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

6 5 3 4 2 1 7 8

left child right child

Swap 2 with 5.

Since 2 is now a leaf, we are done swapping.

Heapsort: example

0 1 2 3 4 5 6 7

1 5 3 4 2 6 7 8

left child right child

Extract the max by swapping it with the size-1-
numsortedth element.

Since 1 is not bigger than 5 and 3, run the “down heap” 
procedure.



Heapsort: example

0 1 2 3 4 5 6 7

5 1 3 4 2 6 7 8

left child right child

Since 1 is not bigger than 4 and 2, run the “down heap” 
procedure.

Swap 1 with 5.

Heapsort: example

0 1 2 3 4 5 6 7

5 4 3 1 2 6 7 8

left child right child

Swap 1 with 4.

Since 1 is now a leaf, we are done swapping.

Heapsort: example

0 1 2 3 4 5 6 7

2 4 3 1 5 6 7 8

left child right child

Extract the max by swapping it with the size-1-
numsortedth element.

Since 2 is not bigger than 4 and 3, run the “down heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

4 2 3 1 5 6 7 8

left child right child

Since 2 is bigger than 1, 2 is in the correct location.

Swap 2 with 4.



Heapsort: example

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

left child right child

Extract the max by swapping it with the size-1-
numsortedth element.

Since 1 is not bigger than 2 and 3, run the “down heap” 
procedure.

Heapsort: example

0 1 2 3 4 5 6 7

3 2 1 4 5 6 7 8

left child right child

Swap 1 with 3.

Since 1 is now a leaf, we are done swapping.

Heapsort: example

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

left child right child

Extract the max by swapping it with the size-1-
numsortedth element.

Since 1 is not bigger than 2, run the “down heap” procedure.

Heapsort: example

0 1 2 3 4 5 6 7

2 1 3 4 5 6 7 8

left child right child

Swap 1 with 2.

Since 1 is now a leaf, we are done swapping.



Heapsort: example

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

left child right child

But since the heap only contains one element, it must be 
the max, so…

Extract the max by swapping it with the size-1-
numsortedth element.

Heapsort: example

0 1 2 3 4 5 6 7

1 2 3 4 5 6 7 8

left child right child

Done.

Which data structure should I choose?
Activity:

For each of the following scenarios, any of the data 
structures we’ve discussed this semester are possible choices.

Spend some time working with a partner and choose what 
you think is the best data structure for that scenario.

However, not every data structure is a good choice.

Justify your choice by writing down the reasons you chose it (hint: 
asymptotic arguments about space and time are good justifications!)

Which data structure should I choose?
Activity:

a.)  You want to count occurrences of each word in a document then print an alphabetical list 
of word frequencies.

 
b.) You are writing code that will be used to store thousands of records (e.g. each record 

contains all the academic information for a specific student) and to retrieve them using a 
key (e.g. student name). The data rarely changes.

 
c.) Assume you are given a collection of pairs as input. Each pair contains the names of two 

people.  Taken together, the pairs describe a social network.  Over time, you will add pairs 
when friendships begin and remove them when friendships end.  Data changes frequently.  
At any point in time, you want to be able to find the k most “popular” people.

 
d.) You want to count the occurrences of each letter in a document, then print an alphabetical 

list of letter frequencies.



Which data structure should I choose?
Activity:

a.)  Two good choices come to mind: hash tables and binary search trees.
       Hash table: O(n log n) = O(n) [to construct] + O(n log n) [to sort] 

   BST: O(n log n) = O(n log n) [to construct] + O(n) [to extract n sorted elements]
 
b.) A hash table is the clear winner: O(n) to construct, O(1) to do a lookup.
 
c.) The most obvious choice is a graph, but this one can have subtle issues. 

  Suppose we use a matrix to store it.  We can add and remove edges in O(1). We can 
also maintain the top-k in O(k) as we add/remove; since k is fixed, it is a constant.  
However, a matrix may be wasteful of space, if the graph is sparse.  For a sparse graph, 
an adjacency list would use less space, and since the graph is sparse maintaining lists 
may be relatively inexpensive.  A hash table is another interesting option if a good hash 
function can be found for two people (e.g., hash(p1,p2) = p1 + p2), and sparseness is 
dealt with naturally by only storing entries where edges exist…

 
d.) Use an array!  We know exactly how many characters there are in an alphabet, and if we 

restrict ourselves to a single language, that alphabet will be small (e.g., ~26, depending on 
what you want to count).  Printing in alphabetical order is trivial, because the array stored 
character counts in alphabetical order. O(1) count, O(n) print.

Recap & Next Class

Today:

Next class:

Dijkstra’s algorithm

Heapsort

Which data structure should I choose?


