
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 32
Heap implementation

Topics

Heap implementation

Announcements

1. Final exam: Saturday, Dec 17, 1:30pm. 
Room TBD.

2. Final exam review session, 
in class, last day of class, Friday 12/9.

Your to-dos

1. Last quiz, due Sat.
2. Lab 10 (partner lab), due Tuesday 12/6 by

10pm.
3. Review readings from Bailey.
4. Study for the final exam.

a. Pro tip: review quizzes.
b. Do problems in study guide/practice exam.
c. Don’t stress out! Just be methodical and do

your best.
5. Work on resubmissions you plan to submit.

Announcements

Friday, Dec 2 @ 2:35pm
Computer Science Colloquium – Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in Energy-
Aware Buildings

Sean Barker ’09, Bowdoin College

The proliferation of smart energy meters has resulted in many
opportunities for next-generation buildings. Energy-aware
“smart buildings” may optimize their energy consumption and
provide convenience and economic benefits through analysis of
their meter data. However, storing and analyzing this data
presents computational challenges, especially when conducted
at scale. In this talk, I discuss our work on several problems in
this space, focusing particularly on efficient compression of
smart meter data and the disaggregation of building-wide
consumption into individual device consumption. Our work in
these areas aims to support the development of sustainable,
energy-efficient smart cities and smart grids.

Refresher: binary max heap

42

3 23

1 0 -1

Max heap property: for any given node n, if p is a
parent node of n, then the key of p is ≥ the key of n.

Insertion

42

3 23

1 0 -1

A binary heap is usually implemented as an always-
complete binary tree.

Implementation

0 1 2 3 4 5 6 7

a b c d e f g

left child right child

leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

A binary heap is often implemented using an implicit
binary tree data structure. In other words, heap nodes
are actually stored in an array or vector.

Max heap in action
Build a max heap from the following elements:

56 5 57 0 -7 99

But store the elements in an array (i.e., an implicit
binary tree). Process nodes from left to right.

0 1 2 3 4 5 6 7

a b c d e f g

left child right child
leftChild(i) = 2 × i + 1

rightChild(i) = 2 × i + 2

parent(i) = ⌊(i − 1) ∕ 2)⌋

0 1 2 3 4 5 6 7

left child right child

Max heap in action

56 5 57 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

5 57 0 -7 99

56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 0 -7 99

56 5

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

56 5 57

0 1 2 3 4 5 6 7

left child right child

Max heap in action

0 -7 99

57 5 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

-7 99

57 5 56 0

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99

57 5 56 0 -7

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 56 0 -7 99

0 1 2 3 4 5 6 7

left child right child

Max heap in action

57 5 99 0 -7 56

0 1 2 3 4 5 6 7

left child right child

Max heap in action

99 5 57 0 -7 56

Done!

Advantages:
find-max: O(1)
insert: O(log n)
extract: O(log n)

0 1 2 3 4 5 6 7

57 0 -7 56

left child right child

99 5

Max heap in action

How is a binary heap implemented?
(code)

Recap & Next Class

Today:

Next class:

Dijkstra’s algorithm

Heaps

