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Your to-dos

1. Read before Fri: Bailey 13.4. Last reading!
2. Lab 10 (partner lab), due Tuesday 12/6 by 

10pm.
3. Last quiz, this Fri/Sat.

Announcements

1. Student course surveys, 
in lab,Wednesday & Thursday this week.

2. Final exam: Saturday, Dec 17, 1:30pm. 
Room TBD.

3. Final exam review session, 
in class, last day of class, Friday 12/9.



Announcements

Friday, Dec 2 @ 2:35pm
Computer Science Colloquium – Wege TCL 123
Smart Meters for Smart Cities: Data Analytics in Energy-
Aware Buildings

Sean Barker ’09, Bowdoin College

The proliferation of smart energy meters has resulted in many 
opportunities for next-generation buildings.  Energy-aware 
“smart buildings” may optimize their energy consumption and 
provide convenience and economic benefits through analysis of 
their meter data. However, storing and analyzing this data 
presents computational challenges, especially when conducted 
at scale.  In this talk, I discuss our work on several problems in 
this space, focusing particularly on efficient compression of 
smart meter data and the disaggregation of building-wide 
consumption into individual device consumption.  Our work in 
these areas aims to support the development of sustainable, 
energy-efficient smart cities and smart grids.

But first, a clarification
Object-oriented adjacency list:

public class Vertex<T> {
    T label;
    List<Vertex<T>> neighbors = new SinglyLinkedList<>();
    …
} 
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Connectedness

Activity: connectedness
boolean isConnected()


How might I compute this using fundamental ops?

(adjacent, vertices, incident, degree, neighbors)
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(note that graph is undirected)



Idea: breadth-first counting
Idea:

(suppose we know |G|)
boolean isConnected(Vertex start)


1. let count = 0
2. let Q be an empty queue
3. enqueue start

4. while Q not empty

a. dequeue v
b. count v
c. mark v as visited
d. put v’s unmarked neighbors in Q

5. if count = # of vertices in graph, return true else false
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Algorithm: connectedness
initialize algorithm
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Algorithm: connectedness
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compute |G| == count

Algorithm: connectedness

Priority Queues



Priority Queue

A priority queue is an abstract data type that returns the 
elements in priority order.  Under priority ordering, an 
element e with a higher priority (an integer) is returned 
before all elements L having lower priority, even if that e was 
enqueued after all L.  When any two elements have equal 
priority, they are returned in first-in, first-out order (i.e., in 
the order in which they were enqueued).

Note

I will refer here to the maximum priority.  But you could also 
refer to minimum priority.  All that matters is that you order 
your data with respect to some extremum.

Priority Queue
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Ordinary letter Blue letter

Priority Queue
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Priority Queue
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0 1 2 3

Ordinary letter Blue letter

enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract



Priority Queue

0 1 2 3

Ordinary letter Blue letter

extract

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: enqueue

Priority Queue

0 1 2 3

Ordinary letter Blue letter

blue letters: extract

Priority Queue: Operations
insert: inserts an element with a given 
priority value. Ensures that the next 
element of the queue is in priority order.  
Like enqueue.

0 1 2 3



Priority Queue: Operations

find-max: returns the next element with 
a highest priority value. Like peek, does 
not modify the queue.  

0 1 2 3

Priority Queue: Operations

extract: removes and returns the next 
element with a maximum priority value. 
Like dequeue.

0 1 2 3

Priority Queue
How to implement?

Vector:
find-max: O(1)
insert: O(n)
extract: O(n)

Heap:
find-max: O(1)
insert: O(log n)
extract: O(log n)

BinarySearchTree:
find-max: O(n)
insert: O(n)
extract: O(n)

Priority Queue

Is it necessary to keep the
entire queue in sorted order?

Operations:

find-max
insert

extract



Heaps

Max Heap

A max heap is a tree-based data structure that returns its 
elements in priority order. A heap maintains the max heap 
property: for any given node n, if p is a parent node of n, 
then the key of p is ≥ to the key of n.

A max heap is a tree whose root is the maximum element 
and whose subtrees are, themselves, heaps.

Is this a binary search tree?

No.  Values do not obey binary search property.
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(Binary) max heap
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Max heap property: for any given node n, if p is a 
parent node of n, then the key of p is ≥ the key of n.



Insertion
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A binary heap is usually implemented as an always-
complete binary tree.

Insertion
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Suppose we want to insert a new node, 78

Insertion

First, insert the new node at the first available position 
in the tree that maintains completeness.

78

42

3 23

1 0 -1

Insertion

Next, compare the new node with its parent.
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23 ≥ 78 ?
No.
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Insertion

If the max heap property is violated, swap.
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Insertion

Continue swapping the new node with parents until 
the max heap property is satisfied.
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Insertion

Continue swapping the new node with parents until 
the max heap property is satisfied (parent ≥ node or 
no parents remain).
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Insertion

The swapping procedure performed on insert is 
often referred to as heap-up or percolate-up.
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Find-max

To find the maximum element in a max heap, simply 
return the root.
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Extract

To remove and return the maximum element in a 
max heap, first perform find-max.
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Extract

Temporarily store the max element.
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Extract

Replace the root with the last element in the 
complete tree.
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Extract

Replace the root with the last element in the 
complete tree.
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Extract

Compare the root with its children.  Swap the root 
with the largest element.
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Extract
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Compare the root with its children.  Swap the root 
with the largest element.

23 ≥ 42 ?
No.

Extract

Continue swapping until the max heap property is 
satisfied (parent ≥ node or no parents remain).
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Extract

Return the saved maximum element.
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Extract
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The swapping procedure performed on extract is 
often referred to as heap-down or percolate-down.

Recap & Next Class

Today:

Next class:

Priority queues

More heaps!

Heaps


