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and
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Instructor: Dan Barowy

Lecture 29
Graphs

Topics

Graphs

Your to-dos

1. Read before Mon: Bailey, Ch. 16.4.
2. Lab 9 (partner lab), due Tuesday 11/29 by 

10pm.
3. No quiz this week!

Reminder

We’re back to wearing masks when we come back from Thanksgiving.



Graphs

Tons of Applications

Nodes = subway stops;  Edges = track between stops
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Tons of Applications

Nodes = cities;  Edges = rail lines connecting cities
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Note: A connection in a graph matters, but not the location of a node.



Tons of Applications

Any guesses as to what this is?
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(The Internet, circa 1972.)

Tons of Applications

(The Internet, circa 1998.)
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A “wireframe” model



Dijkstra’s Algorithm Undirected graph ADT

An undirected graph G is an abstract data type that 
consists of two sets:

• a set V of vertices (or nodes), and
• a set E of undirected edges.

Undirected graph ADT

A graph can be used to represent any structure in which 
pairs of elements are “related.”

In an undirected graph, arbitrary data can be associated 
either with a vertex, an edge, or both.

For example: vertex data = city; edge data = distance.

Undirected graphs are a good choice when a relation is 
symmetric.  E.g., the distance from Williamstown to Boston 
is the same as the distance from Boston to Williamstown.

Undirected graph
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G = (V, E)



Directed graph ADT

A directed graph G is an abstract data type that consists of 
two sets:

• a set V of vertices (or nodes), and
• a set E of directed edges.

Directed graph ADT
In a directed graph, data can be associated either with a 
vertex, an edge, or both.

Example: vertex data = people; edge data = “loves”.

A directed graph is a good choice when relations 
between vertices are not symmetric.

Directed graph
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G = (V, E)

Walking a graph
A walk from u to v in a graph G = (V, E) is an alternating 
sequence of vertices and edges

u = v0, e1, v1, e2, v2, ... , vk-1, ek, vk = v

such that ei = {vi , vi+1} for i = 1, ... , k

• A walk starts and ends with a vertex.

• A walk can travel over any edge and any vertex any 
number of times.

• If no edge appears more than once, the walk is a path.

• If no vertex appears more than once, the walk is a simple 
path.



Walking in circles

A closed walk in a graph G = (V, E) is a walk
v0, e1, v1, e2, v2, ... , vk-1, ek, vk

such that v0 = vk

• A circuit is a path where v0 = vk (no repeated edges)

• A cycle is a simple path where v0  =  vk  (no repeated 
vertices except v0)

• The length of a walk is the number of edges in the 
sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of 
the arrows.
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There is no directed walk from b to a.

Useful theorems

• If there is a walk from u to v, then there is a walk from v to 
u.

• If there is a walk from u to v, then there is a path from u to 
v (and from v to u).

• If there is a path from u to v, then there is a simple path 
from u to v (and v to u).

• Every circuit through v contains a cycle through v.

• Not every closed walk through v contains a cycle through 
v.

(about undirected graphs)

Degree

The degree of a vertex v is the number of edges incident to 
v.

Denoted: deg(v)
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What is the degree of c? of a?



Degree on Digraphs

The in-degree of a vertex v is the number of incoming 
edges incident to v.

Denoted: in-deg(v)

What is the in-degree of c? of a?
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Degree on Digraphs

The out-degree of a vertex v is the number of outgoing 
edges incident to v.

Denoted: out-deg(v)

What is the out-degree of c? of a?
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Degree theorem

For any graph G = (V, E)

deg(v)
v∈V
∑ = 2 |E |

Proof: by induction on |E|.

Hint: How does removing an edge change the equation?

where |E| is the number of edges in G.

Activity

Walk: 
    ex: 

Path: 
    ex: 

Simple path: 
    ex: 

Closed Walk: 
    ex: 

Circuit: 
    ex: 

Cycle: 
    ex: 

Degree: 
    Max Degree Vertex: 
    Min Degree Vertex:
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Recap & Next Class

Today:

Next class:

Graph operations

Graphs

Graph representations


