	Topics
CSCI 136: Data Structures and Advanced Programming Lecture 29	Graphs
Graphs	
Instructor: Dan Barowy Williams	

Your to-dos

- 1. Read **before Mon**: *Bailey*, Ch. 16.4.
- 2. Lab 9 (partner lab), due Tuesday 11/29 by 10pm.
- 3. No quiz this week!

Reminder

We're back to wearing masks when we come back from Thanksgiving.

Tons of Applications

Note: A connection in a graph matters, but not the location of a node.

An **undirected graph G** is an abstract data type that consists of two sets:

a set V of vertices (or nodes), and
a set E of undirected edges.

Undirected graph ADT

A graph can be used to represent any structure in which pairs of elements are "related."

In an undirected graph, **arbitrary data** can be **associated** either with a vertex, an edge, or both.

For example: vertex data = city; edge data = distance.

Undirected graphs are a **good choice** when **a relation is symmetric**. E.g., the distance from Williamstown to Boston is the same as the distance from Boston to Williamstown.

Directed graph ADT

A **directed graph G** is an abstract data type that consists of two sets:

- a set V of vertices (or nodes), and
- a set E of directed edges.

Directed graph ADT

In a directed graph, data can be associated either with a vertex, an edge, or both.

Example: vertex data = people; edge data = "loves".

A directed graph is a good choice when relations between vertices are not symmetric.

Walking a graph

A walk from u to v in a graph G = (V, E) is an alternating sequence of vertices and edges

- A walk starts and ends with a vertex.
- A walk can travel over any edge and any vertex any number of times.
- If no edge appears more than once, the walk is a path.
- If no vertex appears more than once, the walk is a simple path.

Walking in circles

A closed walk in a graph G = (V, E) is a walk

 v_0 , e_1 , v_1 , e_2 , v_2 , ..., v_{k-1} , e_k , v_k such that $v_0 = v_k$

- A circuit is a path where $v_0 = v_k$ (no repeated edges)
- A cycle is a simple path where $v_0 = v_k$ (no repeated vertices except v_0)
- The **length** of a walk is the number of edges in the sequence.

Walking on graphs vs digraphs

In a directed graph, a walk can only follow the direction of the arrows.

There is no directed walk from b to a.

Useful theorems

(about undirected graphs)

- If there is a walk from u to v, then there is a walk from v to u.
- If there is a walk from u to v, then there is a path from u to v (and from v to u).
- If there is a path from u to v, then there is a simple path from u to v (and v to u).
- Every circuit through v contains a cycle through v.
- Not every closed walk through v contains a cycle through v.

Cycle: ex: Degree:

Max Degree Vertex: Min Degree Vertex:

Hint: How does removing an edge change the equation?

Recap & Next Class

Today:

Graphs

Next class:

Graph operations

Graph representations