
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 23
Trees, part 3

Topics

Tree terminology

Your to-dos

1. Read before Fri: review Bailey, Ch 14.
2. Lab 8 (solo lab), due Tuesday 11/15 by 10pm. 

Note: you will implement a tree data structure
called a trie for lab 8; the structure is described in
the lab handout. Please bring a short design
document to your lab meeting.

Properties of trees

Cycle-free: no path will ever revisit the same node.

Terminology

The length of a path is the number of edges in the path.

Length = 2

Terminology

The height of node n is the length of the longest path
between n and any leaf.

Height of n = 1

Terminology

The height of a tree is the length of the longest path
between the root and any leaf.

Height of tree = 2

Terminology

The depth of node n is the length of the path between the
root and n.

Depth of n = 1

Terminology

The level of any node is its depth.

Level 0

Level 1

Level 2

Terminology

The depth of n + the height of n ≤ the height of the tree.

(depth of n: 1) + (height of n: 0) ≤ (height of tree: 2)

Terminology

A complete tree of height h is a full tree with zero or more
rightmost leaves of level h removed.

Properties of trees

Directed or undirected: trees can be either directed,
meaning that traversals can only happen in one direction, or
undirected, meaning that traversals can happen in any
direction.

The tree shown here is directed. 
We can represent an undirected tree using back edges.

Is a list a tree?

a b c Ø

Yes, a list is a tree whose nodes have degree 1.

We call such trees degenerate.

The height of a tree is the length of the longest path
between the root and any leaf.

Height of tree = 2

Activity: Binary Tree Height

Let’s think about some corner cases.

Height of tree = 0

Binary Tree Height

What is the height of a tree with just one node?

The height of a tree is the length of the longest path
between the root and any leaf.

Let’s think about some corner cases.

Height of tree = -1

Binary Tree Height

What about the empty tree?

The height of a tree is the length of the longest path
between the root and any leaf.

Here’s a more formal definition.

Binary Tree Height

The height of a tree is defined as:

• -1 if the tree is empty, or
• height(left) or height(right), whichever is bigger, + 1

empty tree: -1

just a root: 0

any other tree: longest path

How might we implement getHeight()?

Activity: Binary Tree Height

Height

1

2 4

^

-

×

2

1 - 24 × 2

Binary tree traversals

Binary tree traversals

Suppose you are asked to write an Iterator<T> for a
binary tree. What order do you choose?

Remember that tree nodes store data (T). A traversal
corresponds with the order that data is returned.

a

b c

d e f g

Binary tree traversals

Pre-order traversal: Return data from each node before its
children, and then return child data from left to right.

a

b c

d e f g

1

2

3 4

5

6 7

Returns the sequence: a, b, d, e, c, f, g

Binary tree traversals

In-order traversal: Return data from each node after its left
child and before its right child.

a

b c

d e f g1

2

3

4

5

6

7

Returns the sequence: d, b, e, a, f, c, g

Binary tree traversals

Post-order traversal: Return data from each node after its
children; return child data from left to right.

a

b c

d e f g1 2

3

4 5

6

7

Returns the sequence: d, e, b, f, g,c, a

Binary tree traversals

Level-order traversal (aka breadth-first order): Return
data from each node in level i before data in level i+1.

a

b c

d e f g

1

2 3

4 5 6 7

Returns the sequence: a, b, c, d,e,f, g

Level 0

Level 1

Level 2

2 4

Activity: What traversal should I use?

Suppose I encode the arithmetic expression 1 - 24 × 2
using the following tree.

-

1 ×

^ 2

Ordered Trees

Binary search tree

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be > any key stored in the left subtree, and
• must be ≤ any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Binary search tree (alternative)

A binary search tree is a binary tree that maintains the
binary search property as elements are added or removed.
In other words, the key in each node:

• must be ≥ any key stored in the left subtree, and
• must be < any key stored in the right subtree.

As with other ordered structures, order is maintained on
insertion.

Key, Value nodes

Note that I said key instead of element.

Storing a key and a value in each node allows the greatest
flexibility when arranging a tree. I.e., the key type K need
not be the value type V.

Restriction: keys must be comparable in some way (e.g.,
Comparable<K> or Comparator<K>).

Example
Insert the following elements: 71,20,27,17,91,14,87

Assume K and V are the same.

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

27 27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

27

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

8727

Example
Insert the following elements: 71,20,27,17,91,14,87

71

Assume K and V are the same.

20

17

91

14

Activity
Insert the following elements:

Assume K and V are the same.

Let’s start implementing this together.

Binary Search Tree

Tree terminology

Tree traversals

Binary search trees

Recap & Next Class

Today:

Next class:

