CSCI 136: Data Structures and Advanced Programming
Lecture 23
Trees, part 3
Instructor: Dan Barowy Williams

Topics

Tree terminology

Your to-dos

1. Read **before Fri**: review Bailey, Ch 14.
2. Lab 8 (solo lab), due Tuesday 11/15 by 10pm.
 Note: you will implement a tree data structure called a **trie** for lab 8; the structure is described in the lab handout. Please bring a short design document to your lab meeting.

Properties of trees

Cycle-free: no path will ever revisit the same node.
Terminology

The **length** of a path is the **number of edges** in the path.

![Diagram showing the length of a path](image)

Length = 2

Terminology

The **height** of node **n** is the length of the longest path between **n** and any leaf.

![Diagram showing the height of a node](image)

Height of **n** = 1

Terminology

The **height** of a **tree** is the length of the longest path between the **root** and any leaf.

![Diagram showing the height of a tree](image)

Height of **tree** = 2

Terminology

The **depth** of node **n** is the length of the path between the **root** and **n**.

![Diagram showing the depth of a node](image)

Depth of **n** = 1
Terminology

The **level** of any node is its depth.

The depth of \(n \) + the height of \(n \) ≤ the height of the tree.

(depth of \(n: 1 \)) + (height of \(n: 0 \)) ≤ (height of tree: 2)

Terminology

A **complete** tree of **height** \(h \) is a full tree with zero or more rightmost leaves of **level** \(h \) removed.

Properties of trees

Directed or **undirected**: trees can be either directed, meaning that traversals can only happen in one direction, or undirected, meaning that traversals can happen in any direction.

The tree shown here is directed. We can represent an undirected tree using back edges.
Is a list a tree?

\[
\begin{array}{ccc}
\text{a} & \rightarrow & \text{b} & \rightarrow & \text{c} & \emptyset
\end{array}
\]

Yes, a list is a tree whose nodes have degree 1.

We call such trees degenerate.

Activity: Binary Tree Height

The height of a tree is the length of the longest path between the root and any leaf.

Height of tree = 2

Let's think about some corner cases.

What is the height of a tree with just one node?

The height of a tree is the length of the longest path between the root and any leaf.

Height of tree = 0

Binary Tree Height

Let's think about some corner cases.

What about the empty tree?

The height of a tree is the length of the longest path between the root and any leaf.

Height of tree = -1
Binary Tree Height

Here’s a more formal definition.

The **height** of a tree is defined as:
- -1 if the tree is empty, or
- \(\text{height(left)} \) or \(\text{height(right)} \), whichever is bigger, + 1

empty tree: -1

just a root: 0

any other tree: longest path

Activity: Binary Tree Height

How might we implement `getHeight()`?

Binary tree traversals
Binary tree traversals

Suppose you are asked to write an `Iterator<T>` for a binary tree. What order do you choose?

Remember that tree nodes store data (`T`). A traversal corresponds with the order that data is returned.

Pre-order traversal: Return data from each node **before its children**, and then return child data from left to right.

Returns the sequence: `a, b, d, e, c, f, g`

In-order traversal: Return data from each node **after its left child** and **before its right child**.

Returns the sequence: `d, b, e, a, f, c, g`

Post-order traversal: Return data from each node **after its children**; return child data from left to right.

Returns the sequence: `d, e, b, f, g, c, a`
Binary tree traversals

Level-order traversal (aka *breadth-first order*): Return data from each node in *level* \(i\) before data in *level* \(i+1\).

![Tree Diagram]

Returns the sequence: \(a, b, c, d, e, f, g\)

Activity: What traversal should I use?

Suppose I encode the arithmetic expression \(1 - 2^4 \times 2\) using the following tree.

![Tree Diagram]

Binary search tree

A **binary search tree** is a binary tree that maintains the **binary search property** as elements are added or removed. In other words, the *key* in each node:

- must be > any *key* stored in the left subtree, and
- must be \(\leq\) any *key* stored in the right subtree.

As with other ordered structures, order is maintained on insertion.
Binary search tree (alternative)

A *binary search tree* is a binary tree that maintains the *binary search property* as elements are added or removed. In other words, the *key* in each node:

- must be ≥ any *key* stored in the left subtree, and
- must be < any *key* stored in the right subtree.

As with other ordered structures, order is maintained on insertion.

Key, Value nodes

Note that I said *key* instead of *element*.

Storing a *key* and a *value* in each node allows the greatest flexibility when arranging a tree. I.e., the key type K need not be the value type V.

Restriction: keys must be *comparable* in some way (e.g., `Comparable<K>` or `Comparator<K>`).

Example

Insert the following elements: 71, 20, 27, 17, 91, 14, 87

Assume K and V are the same.

Example

Insert the following elements: 71, 20, 27, 17, 91, 14, 87

Assume K and V are the same.
Example

Insert the following elements: 71, 20, 27, 17, 91, 14, 87
Assume K and V are the same.

Example

Assume K and V are the same.
Example
Insert the following elements: 71, 20, 27, 17, 91, 14, 87
Assume K and V are the same.

Activity
Insert the following elements:
Assume K and V are the same.

Binary Search Tree

Let's start implementing this together.

Recap & Next Class

Today:
Tree terminology
Tree traversals

Next class:
Binary search trees