CSCI 136:
Data Structures
and
Advanced Programming

Lecture 17

Linear structures, part 2

Instructor: Dan Barowy
Williams

Topics

«Stack data structure
*Queue ADT

*Queue data structure
*Resubmission procedure

Your to-dos

1. Lab 6 (partner lab), due Tuesday 11/1 by 10pm.

(two weeks!)
2. Review readings for midterm.

Announcements

*Colloquium: What | Did Last Summer (Research),
2:35pm in Wege Auditorium with cookies.

*Practice midterm posted on the course website.

* TA feedback. =
Ol

Announcements

Please consider being a TA next semester
(especially for this class!)

Applications due Friday, October 28.

https://csci.williams.edu/tatutor-application/

Queue ADT

A queue is an abstract data type that stores a collection of
any type of element. A queue restricts which elements
are accessible: elements may only be added to the "end" of
the collection and elements may only be removed from the
"front" of a collection. The "enqueue" operation places an
element at the end of a queue while a "dequeue" operation
removes an element from the front.

Queue ADT

—

Queue ADT

Also sometimes referred to as a FIFO: “first in, first out.”

(a stack would be an annoying way to process a line at
Starbucks!)

Frequently used as a buffer to hold work to do later.

We also frequently include a "peek" operation that lets us
look at an element on the top of a queue without removing it,
and "size" and “isEmpty" operations that let us check how
many elements are stored and whether a queue stores zero
elements, respectively.

Queue implementations

QueueArray

A QueueArray is a queue implemented using an array for
element storage.

Pros: enqueue and dequeue are O(1) operations.

Cons: data structure has a maximum capacity.

Queue implementations
QueueVector

A QueueVector is a queue implemented using a Vector for
element storage.

Pros: enqueue and dequeue are amortized O(1) operations.
There is no maximum capacity.

Cons: Most of the time, they take O(1) time, but occasionally--
when the underlying array needs to grow--an O(n) cost is
incurred. This may be fine for most applications, but if the
application cannot tolerate wide variation in time, this is a bad
choice. Also, unless the underlying array is completely full,
Vectors waste some space.

Queue implementations
QueuelList

A QueuelList is a queue implemented using a List (usu. DLL
or CL) for element storage.

Pros: enqueue and dequeue are O(1) operations. There is no
maximum capacity. enqueue and dequeue costs are
predictable (always the same), unlike QueueVector.

Cons: because of the way computer hardware is
implemented, a QueueList's constant-time cost is likely to be
much higher than a QueueVector's. So a QueuelList's
performance may be more predictable than a QueueVector,
but it will likely be slower on average.

Other queue-like ADTs

One very useful and interesting variant of the Queue ADT is
the Priority Queue ADT. We’'ll talk about priority queues after
the midterm!

Resubmission procedure

Resubmission procedure

Remember: the goal of this
course is mastery.

Resubmission procedure

Allows you to earn up to 50%
of the lost points.

E.g., if you got a 50% on the midterm,
you can get a 75% on resubmission.

Midterm is 25% of your final grade.
This is worth doing!

1.

Resubmission procedure

You have until the end of
reading period.

Resubmission must include
both the original work and the
new submission.

Must be accompanied by an
explanation document, written
in plain English.

Explanation document must identify:

1.

2.
3.

Resubmission procedure

What the mistake is.
How you fixed the mistake.
Why the new version is correct.

Resubmission procedure

Resubmit code electronically
(i.e., using git).

Resubmit exam on paper
(i.e., hand it to me or put in mailbox).

Resubmission procedure
Sample from CS334:

2. Troubleshooting
My fix was slightly wrong. Righr before calling random _string(), I added

char % arrarr([i] = malloc(sizeof (char) *MAXLEN) ;

when what I should have added is

arrarr[i] = malloc(sizeof (char) *MAXLEN) ;

mcheck (arrarr[i]);
There is no need for “char *” because I am not declaring arrarr.
I got my explanation and drawing wrong. In my drawing, I had arrarr|i] pointing back to a call stack because I
thought the program would automatically allocate memory on a call stack if we did not malloc(). What I should have
said is that without allocating sub-array arrarr|i], the address currently living in the sub-array is arbitrary so the value
referred to by the sub array is also arbitrary. When we call memset () or manipulating arrarr|i] in random_string(),
we are likely to get memory errors. Below is what I should have drawn.

SameH’nmﬂ arbitrany
Snme%inq arbitrany

lterators

What do the following have in common? _
dousle(] o lteration

// .. initialize a ..

double sum = 0.0;
for (int i = 0; i < a.length; i++) {
sum += a[i];

}

List<Double> ls = new SinglyLinki = (S y = =1 Iteration is the repetition of a process in order to generate

// .. initialize 1ls .. | L .
N e— s a (possibly unbounded) sequence of outcomes. Each step
for (int i = 0; i < ls.size(); i I

S S A ‘ in an iteration performs the given process once; the result of
} | “ each step is the starting point of the next step.

Stack<Double> s = new StackVec
// .. initialize s ..
double sum = 0.0;
while (!s.isEmpty()) {
sum += s.pop();

}

Each program iterates Each program iterates

double[] a double[] a

// .. initialize a .. // .. initialize a ..

double sum = 0.0; double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += af[i];

for (int i = 0; i < a.length; i++) {
sum += a[i];

} }

100 | 101] 102] 103 100] 101 | 102] 103

i 0 sum 0 i (1] sum | 100

Each program iterates

double[] a
// .. initialize a ..
double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100]| 101] 102] 103

i 1 sum | 100

Each program iterates

double[] a

// .. initialize a ..

double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100] 101 | 102] 103

i 1 sum | 201

Each program iterates

double[] a
// .. initialize a ..
double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100 | 101] 102] 103

i 2 sum | 201

Each program iterates

double[] a

// .. initialize a ..

double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += af[i];

}

100] 101 | 102] 103

i 2 sum | 303

Each program iterates

double[] a
// .. initialize a ..
double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100]| 101] 102] 103

i 3 sum | 303

Each program iterates

double[] a

// .. initialize a ..

double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100] 101 | 102] 103

i 3 sum | 406

Each program iterates

double[] a
// .. initialize a ..
double sum = 0.0;

for (int i = 0; i < a.length; i++) {
sum += a[i];

}

100 | 101] 102] 103

i 3 sum | 406

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..

double sum = 0.0;

for (int i 0; i < ls.size(); it+) {

}

sum += ls.get(i);

100f] —4>»|101|] —>|102] 0

Iteration is terminated!

i (] sum (]

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i = 0; i < ls.size(); i++) {
sum += ls.get(i);

}

100 1] 101 —1>|102] O

i 0 sum | 100

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1ls ..
double sum 0.0;

for (int i 0; 1 < 1ls.size(); i++) {
sum += ls.get(i);
}
100 —1—>| 101 —1+>| 102 ()]

i 1 sum | 100

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i 0; i < 1ls.size(); i++) {
sum += ls.get(i);

}

100] —>»|101] —}>|102] @

i 1 sum | 100

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i 0; i < ls.size(); it+) {

}

sum += ls.get(i);

100f] —4>»|101|] —>|102] 0

i 1 sum | 201

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i = 0; i < ls.size(); i++) {
sum += ls.get(i);
}
100 —1>] 101 —1>| 102 o
i 2 sum | 201

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1ls ..
double sum 0.0;

for (int i 0; 1 < 1ls.size(); i++) {
sum += ls.get(i);
}
100 —1—>| 101 —1+>| 102 ()]

i 2 sum | 201

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i 0; i < 1ls.size(); i++) {
sum += ls.get(i);

}

100] —>»|101] —}>|102] @

i 2 sum | 201

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;

for (int i 0; i < ls.size(); it+) {

}

sum += ls.get(i);

100f] —4>»|101|] —>|102] 0

i 2 sum | 303

Each program iterates

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum 0.0;

for (int 1 0; i < ls.size(); i++) {
sum += ls.get(i);

}

100 1] 101 —1>|102] O

i 2 sum | 303

Iteration is terminated!

Each program iterates

Stack<Double> s = new StackVector<>();
// .. initialize s ..
double sum = 0.0;
while (!s.isEmpty()) {
sum += s.pop();

}
top

100 | 101 | 102

sum o

Each program iterates

Stack<Double> s = new StackVector<>();
// .. initialize s .
double sum = 0.0;

while (!s.isEmpty()) {
sum += s.pop();

}

top

100] 101

sum | 102

Each program iterates

Stack<Double> s = new StackVector<>();
// .. initialize s ..
double sum = 0.0;
while (!s.isEmpty()) {
sum += s.pop();

}
top

100] 101

sum | 102

Each program iterates Each program iterates

Stack<Double> s = new StackVector<>();
// .. initialize s ..
double sum = 0.0;
while (!s.isEmpty()) {
sum += s.pop();

Stack<Double> s = new StackVector<>();
// .. initialize s .
double sum = 0.0;

while (!s.isEmpty()) {
sum += s.pop();
}

}

top top

100

100

sum | 203

sum | 203

Each program iterates Each program iterates

Stack<Double> s = new StackVector<>(); Stack<Double> s = new StackVector<>();
// .. initialize s ..

// .. initialize s ..
double sum = 0.0;

double sum = 0.0;
while (!s.isEmpty()) { while (!s.isEmpty()) {
sum += s.pop(); sum += s.pop();
}

}

top top

sum | 303

sum | 303

Iteration is terminated!

Essentially the same algorithm! Problems

double[] a
// .. initialize a ..

gouble sum = 0.0;
for (intd~==0; i <fa.length; ¥++) {
s + 1=illl'b .

}

* Different data structures yield different code for same

List<Double> 1ls = new SinglyLinkedList<>(); algorlthm

// .. initialize 1ls ..

22;‘”};% T size()) iee) ¢ - Data hiding potentially causes efficiency problems.
sum +A_ls.get(1i); .

} *Inspecting data structure “from the outside” can change

the state of a data structure (e.g., pop ()’ing a stack).

Stack<Double> s = new StackVector<>();
// .. initialize s ..
double sum. :

But the code looks different.

What if | told you that you could solve Iteration abstraction to the rescue.

double[] a

// .. initialize a ..

double sum = 0.0;

for (double d : a) {
sum += d;

}

List<Double> 1ls = new SinglyLinkedList<>();
// .. initialize 1s ..
double sum = 0.0;
for (double d : 1s) {
sum += d;

}

Stack<Double> s = new StackVector<>();
// .. initialize s ..
double sum = 0.0;
for (double d : s) {
sum += d;

}

all of these problems with abstraction? Brought to you by lIterators.

Iterators are a really good idea.

* Invented by Barbara
Liskov in 1974.

* Incidentally, abstract data
types were also invented
by Barbara Liskov in 1974.

* (1974 was a good year!)

* Both debuted in an
influential PL named CLU.

* Barbara won the Turing
Award in 2008 for this
work and more.

Remember this from Python?

for num in nums:
do something

Java has it too!

for (int num : nums) {
// do something

}

(admittedly, it is less pretty in Java)

This is called a “for-each loop”

Recap & Next Class

Today:

Queue ADT
Queue implementation

Resubmissions

Next class:
lterators

Search

