
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 12
Abstract data types

"If somebody were to watch most of my life over the
past few years, it would be me sitting in a quiet room
by myself studying and laboring over mounds of
information," he told NPR.

"I think that sometimes people just look at the end
product of somebody's hard work," he said, reflecting
back on his own journey. "But you know, [by doing
that] you kind of miss the part where people are doing
all the work that it takes to become a success."

“[M]y philosophy has always been to be comfortable
with being uncomfortable. And the more I can put
myself into uncomfortable situations, the more I can
grow."

In recent years, Allamby has been asked to speak
publicly about his journey from fixing cars to saving
lives. When he does, he avoids using language that
makes him sound exceptional. In fact, he tries to do
the opposite, stressing the methodical nature of his
slow rise through the ranks of academia.

"There's going to be times when you feel like giving
up, but those are the times to really push forward and
to rely on the people who surround you," Allamby
said. "People who give you positive feedback in
order to kind of fill your bucket back up so that you
can keep going."

Topics

•ADTs
•More linked lists

Your to-dos

1. Read before Fri: Bailey, Ch 9.4–9.5.
2. Quiz 4, due Saturday by noon.
3. Lab 4, due Tuesday 10/11 by 10pm.

Announcements

•Quizzes: earlier
•Colloquium: What I Did Last Summer (Industry),
2:35pm in Wege Auditorium with cookies.

COOKIES

Linked List

A linked list is a recursive data structure. A linked list is
composed of simple pieces called list nodes. A list node
contains data (of generic type T) and a reference (a “link”)
to either another list node or null.

Linked List

The empty list is defined as null.

Linked List

Every other list has at least one list node.

data next

Singly Linked List

There’s only one link in each node, to the rest of the list.

234

How would I represent the above idea in Java?

The purpose of a class:

To “abstract away” implementation details.

Abstraction

Abstraction is the process of removing irrelevant
information so that a program is easier to understand.

Vector

index
Of

size
addFirst

addLast

remove

Do you see any similarities?

SinglyLinkedList

index
Of

size

addLast

remove

The two classes share the same interface.

addFirst

Interface

An interface defines boundary between two systems across
which they share information. An interface is a contract:
calling a method defined in an interface returns the data as
promised.

Because an interface contains no implementation,
p r o g r a m m e r s w h o u s e t h e m c a n n o t r e l y o n
implementation details.

E.g., the List interface states that there must be an add
method but does not say how it should be implemented.

List
A list is an ordered collection of items of an element of type
E. It supports prepending an element to the front, appending
(adding) and element to the end, finding an element, and
element removal.

Observe that this similarity is “deeper” than just what an
interface provides….

A Vector is a list.

A SinglyLinkedList is a list.

A DoublyLinkedList is a list.

Abstract Data Type

An abstract data type is a mathematical formulation of a
data type. ADTs abstract away accidental properties of data
structures (e.g., implementation details, programming
language). Instead, ADTs contain only essential properties
and are concisely defined by their logical behavior over a
set of values and a set of operations.

In an ADT, precisely how data is represented on a
computer does not matter.

By contrast: data structure

A data structure is the physical form of a data type, i.e., it
is an implementation of an ADT. Generally, data structures
are designed to efficiently support the logical operations
described by the ADT.

For data structures, precisely how data is represented on
a computer matters a lot. Simple data structures are often
composed of simple representations, like primitives, while
more complex data structures are composed of other data
structures.

Vector, SinglyLinkList, etc. are data structures.

A Vector is a List

A Linked List is a List Vector Big-O

operation worst best

addFirst(E e) O(n) O(1)

get(int i) O(1) O(1)

indexOf(E e) O(n) O(1)

remove(E e) O(n) O(1)

size() O(1) O(1)

Singly-Linked List Big-O

operation worst best

addFirst(E e) O(1) O(1)

get(int i) O(n) O(1)

indexOf(E e) O(n) O(1)

remove(E e) O(n) O(1)

size() O(n) [O(1) w/mod.] O(n) [O(1) w/mod.]

Missing from Java: ADT behavior

Java provides no way of specifying behavior independently
of implementation.

E.g., a List interface might require

public void prepend(T elem)

But there’s no way to require that an implementation
actually place the element at the beginning of the list.

The best we can do in Java: static types

Java uses types to stand in for ADTs.

However, Java provides some control over abstractness,
and we can use this control to approximate what we want.

interface → fully abstract

abstract class → partially abstract

class → not abstract

Interface

An interface defines boundary between two systems across
which they share information. An interface is a contract:
calling a method defined in an interface returns the data as
promised.

An interface contains no implementation!

You cannot specify behavior at all!

Honkable

Recap & Next Class

•ADTs
•Lists

Today:

Next class:

•Sorting

