Topics

CSCI 136:
Data Structures
and

Advanced Programmin *Mathematical induction
J J Vectors—why add is “always O(1)”

Lecture 11 -Linked lists

Lists

Instructor: Dan Barowy
Williams

Your to-dos Announcements

1. Read before Wed: Bailey, Ch 9.4-9.5.
2. Lab 3, due Tuesday 10/4 by 10pm.
3. Quiz 4, due Saturday by noon.

*Colloquium: What I Did Last Summer (Industry),
2:35pm in Wege Auditorium with cookies.

Quiz 3

Which of the following completions of the expression calculating midindex

results in the recursive function correctly calculating the smallest element

of the array?
(a) int midIndex
(b) int midIndex

(c) int midIndex
(d) int midIndex

(startIndex + endIndex) / 2;
(endIndex - startIndex) / 2;
endIndex / 2;

(endIndex + 1) / 2;

c 2 respondents 3% I
d o* |
a 54 respondents 93% _ v
b 2 respondents 3% I

Well done!

Quiz 3

Assuming this Java method is completed correctly, what is the Big-O
running time of this algorithm assuming the length of the array is n?
public static int findSmallest(int [] array, int startIndex, int endIndex)
{
if(startIndex == endIndex){

return array[startIndex];

}
else{
int midIndex = _________________________; // Select code to complete

int firstHalf = findSmallest(array, startIndex, midIndex);
int secondHalf = findSmallest(array, 1 + midIndex, endIndex);

return Math.min(firstHalf, secondHalf);

1 }
o(1)
O(n"2) 18 respondents
O(log n) 14 respondents
O(n) 26 respondents

Let’s discuss this problem...

Quiz 3

Assuming this Java method is completed correctly, what is the Big-O
running time of this algorithm assuming the length of the array is n?

public static int findSmallest(int [] array, int startIndex, int endIndex)

if(startIndex == endIndex){
C1 return array[startIndex];

}
else{
C2 int midIndex = ___________________ 8 // Select code to complete
Cs C4 int firstHalf = findSmallest(array, startIndex, midIndex);

C5 int secondHalf = findSmallest(array, 1 + midIndex, endIndex);

C3 return Math.min(firstHalf, secondHalf);
}

(a) int midIndex = (startIndex + endIndex) / 2;
(b) int midIndex = (endIndex - startIndex) / 2;
(c) int midIndex = endIndex / 2;

(d) int midIndex = (endIndex + 1) / 2;

T(n) = (c1 x n) + (ce x (logz(n) - 1)) = O(n)

Mathematical Induction

Principle of Mathematical Induction To be clear:

Hypothesis: P(n) is true for all integers n = a,

If you want to prove that P(n) is true for all integers n = a,
1. Base case: P(a) is true. y P (n) g

1. You must first prove that P(a) is true.
2. Inductive step: Y (a)

2. Thens ose P(k) is true and prove that P(k+1) is true.
For all integers k = a, if P(k) is true then P(k+1) is true. PP (k)is tru prov (k+1)

Expanding vectors: why double? One-at-a-time expansion
Initial array.
4 2’ Insert element.

Why is the array doubling strategy
for Vector better than expanding the
array one element at a time?

‘a’ 41— ‘b’ New array; copy previous; insert element.

‘a’ | ‘b’ et 7 New array; copy previous; insert element.

ar | b | e -1 'd’ New array; copy previous; insert element.

Insertion into an array

How much does array insertion cost?

‘a’ B ‘ar
T

qr

It costs O(1).

In fact, lookup and insertion both cost O(1).

Tradeoff: arrays are fixed size.

Copying an array

How much does an array copy cost?

It costs O(1) x m, where m is the size of the original array.

How many copies?

of copies for one-at-a-time expansion:

1 + 2 + 3 + . +(n-1)
ad 2nd 3rd 4th nth
a
Q) elem. elem. elem. elem.

Recalltheorem:1 + 2 + 3 + .. + k=k(k+1)/2

Sub n-1fork: (n-1)((n-1)+1)/2=n(n-1)/2

= (n2-n)/2

One-at-a-time expansion costs = O(n?)

How many copies?

of copies for doubling expansion:

1 + 2 + 4 + .. +(n/2)
up to up to up to up to
add0) 5y 4 8th nth
elem. elem. elem. elem.

Neattheorem: 1 + 2 + 4 + .. + 2k-1=2k-1]
Suppose n = 2k,
Thenl + .. + n/2=1 + .. + 2k/2
=1 + .. + 2k-1=2k-1=n-1

Doubling expansion costs = O(n)

Which is faster? A good practice induction problem

Prove: n cents can be obtained by using only 3-
cent and 8-cent coins, for all n = 15.

é One-at-a-time expansion costs = O(n2) @
= Doubling expansion costs = O(n) &

Doubling is Vin Diesel-approved.

Linked Lists Linked List

A linked list is a recursive data structure. A linked list is
composed of simple pieces called list nodes. A list node
contains data (of generic type T) and a reference (a “link”)
to either another list node or null.

Linked List

The empty list is defined as null.

Linked List

.

data next

Every other list has at least one list node.

Linked List

—

data next

A list node stores data of type T.

Here, T is Integer.

Linked List

1

data next

The next field stores a reference (“link”) to the next node.
If the node is the last node, the next node is null.

Linked List

— — Q

data next data next

If the next node is not null, it is, recursively, a list node.

The last node in the list must always point to null.

Linked List

— J

/

head

N

Alist has parts.

tail

Linked List

When we add data to a list, we always
append to the head.

Linked List

—

To find a value, we must always traverse

the list starting from the head.

E.g., looking for

Linked List Linked List

v v
To find a value, we must always traverse To find a value, we must always traverse
the list starting from the head. the list starting from the head.
E.g., looking for <... E.g., looking for

Recap & Next Class

Linked List
Today:
4 -\Ithy Vector should double
ol 1 t
1, 1, 1., Q ists

Next class:

To find a value, we must always traverse *ADTs _
the list starting from the head. *More lists

E.g., looking for

