CSCI 136: Data Structures and Advanced Programming
Lecture 10
Recursion, part 2
Instructor: Dan Barowy Williams

Topics
- Recursion costs
- Mathematical Induction

Your to-dos
1. Lab 3, due Tuesday 10/4 by 10pm
2. Read before Mon: Bailey, Ch 9.4–9.5.
3. Quiz 3, due tomorrow by noon.

Announcements
- CS Colloquium this Friday, Sept 30 @ 2:35pm in Wege Auditorium (TCL 123)

Sonia Roberts (Northeastern University)
Sonia is a postdoctoral research associate working on soft sensors based on origami and knitted structures for soft robots at Northeastern University as part of the Institute for Experiential Robotics.
Sonia's research focuses on the morphological design and control of robots, asking questions like how detailed a model of the environment a robot needs, why a robot might need legs or wheels for different tasks, and what the trade-off is between robustness and plasticity when implementing aspects of a robot's control using morphology versus actuated degrees of freedom.
Recall: Factorial

- $n! = n \times (n-1) \times (n-2) \times \ldots \times 1$

- Work with a partner and see if you can come up with a recursive solution.

How much does a recursive solution cost?

Graphically...

```java
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```

Call program with input “3”.

Call stack
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Call program with input “3”.

I skipped a subtlety here; did you spot it?
```java
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```

```
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```
```java
class Factorial {
    public static int fact(int n) {
        if (n == 0) { return 1; }
        return n * fact(n - 1);
    }
    public static void main(String[] args) {
        int n = Integer.parseInt(args[0]);
        System.out.println(fact(n));
    }
}
```
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Base case: recursion terminates.
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

call stack
main
args
n = 3
ret = 2

n = 3
ret = 2

args
n = 3

println
x = 6

n = 3
ret = 6

println
x = 6
class Factorial {
 public static int fact(int n) {
 if (n == 0) { return 1; }
 return n * fact(n - 1);
 }
 public static void main(String[] args) {
 int n = Integer.parseInt(args[0]);
 System.out.println(fact(n));
 }
}

Recursion tradeoffs

- **Advantages**
 - Often **easier** to construct recursive solution than a loop
 - Code is usually **clearer**
 - Some problems do not have **obvious** non-recursive solutions

- **Disadvantages**
 - **Time cost** of recursive calls
 - **Memory cost** (need to store state for each recursive call until base case is reached)

Mathematical Induction

A note about “formal methods”

If the problem “fits” the mold, there is a procedure for determining truth.
Mathematical Induction

- The **mathematical cousin** of recursion is **induction**
- Induction is a **proof technique**
- Purpose: to **simultaneously prove** an **infinite number** of theorems!

Principle of Mathematical Induction

Let $P(n)$ be a **predicate** that is defined for integers n, and let a be a **fixed integer**.

If the following two statements are **true**:

1. $P(a)$ is **true**.
2. For all integers $k \geq a$, if $P(k)$ is **true** then $P(k + 1)$ is **true**.

then the statement

for all integers $n \geq a$, $P(n)$ is **true**

is also **true**.

Principle of Mathematical Induction (variant)

Let $P(n)$ be a **predicate** that is defined for integers n, and let a be a **fixed integer**.

If the following two statements are **true**:

1. $P(a)$ is **true**.
2. For all integers $k > a$, if $P(k-1)$ is **true** then $P(k)$ is **true**.

then the statement

for all integers $n \geq a$, $P(n)$ is **true**

is also **true**.

To be clear:

If you want to prove that $P(n)$ is **true** for all integers $n \geq a$,

1. You must first prove that $P(a)$ is **true**.
2. Then you must prove that:

 For all integers $k \geq a$, if $P(k)$ is **true** then $P(k+1)$ is **true**.

Critically, when proving #2, **assume** that $P(k)$ is **true** and **show** that $P(k+1)$ must also be **true**.
Names for things and “form”

Hypothesis: $P(n)$ is true for all integers $n \geq a$,

1. **Base case:** $P(a)$ is true.

2. **Inductive step:**

 For all integers $k \geq a$, if $P(k)$ is true then $P(k+1)$ is true.

Like recursion, there is an analogy

Example

Prove that the sum of the first n integers is:

$$\frac{n(n+1)}{2}$$
Example

Put another way, prove

\[P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \]

for all \(n \geq 1 \).

We have an unbounded number of hypotheses ("for all \(n \geq 1 \)).

Use **mathematical induction**.

Example

Step 1: Prove \(P(a) \)

What would a good \(a \) be?

\[P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \]

The "simplest" instance is \(a = 1 \). Let's start there.

Example

Remember the template!

Step 1: Prove \(P(a) \)

Step 2: Prove \(P(k) \Rightarrow P(k+1) \)

Therefore,

\[P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2} \]

For all \(n \geq 1 \).

Is true.

Example

Step 1: Prove \(P(a) \)

\[P(a) : 1 = \frac{1(1+1)}{2} \]

Is this statement true? **Yes.**

Proof: \[\frac{1(1+1)}{2} = \frac{2}{2} = 1 \]
Example

Step 2: Prove \(P(k) \Rightarrow P(k+1) \)

Assume the following is true:

\[
P(k) : 1 + 2 + 3 + \ldots + k = \frac{k(k+1)}{2}
\]

Prove that \(P(k) \) implies:

\[
P(k+1) : 1 + 2 + 3 + \ldots + (k + 1) = \frac{(k+1)((k+1)+1)}{2}
\]

Let's handle the left side first.

\[
1 + 2 + 3 + \ldots + (k + 1)
\]

Looks familiar. Isn’t it the same as:

\[
(1 + 2 + 3 + \ldots + k) + (k + 1)
\]

According to \(P(k) \), which is true, it must be equal to:

\[
(1 + 2 + 3 + \ldots + k) + (k + 1) = \frac{k(k+1)}{2} + (k + 1)
\]

Simplify

\[
= \frac{k(k+1)}{2} + (k + 1)
\]

\[
= \frac{k(k+1) + 2(k+1)}{2}
\]

Let’s stop here.
The left side is

\[
= \frac{(k+1)(k+2)}{2}
\]
Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

$P(k+1) : 1 + 2 + 3 + \ldots + (k + 1) = \frac{(k+1)((k+1)+1)}{2}$

Let’s handle the right side now.

$\frac{(k+1)((k+1)+1)}{2}$

Simplify

$\frac{(k+1)(k+2)}{2}$

Let’s stop here.

Example

Step 2: Prove $P(k) \Rightarrow P(k+1)$

$P(k+1) : 1 + 2 + 3 + \ldots + (k + 1) = \frac{(k+1)((k+1)+1)}{2}$

We just showed that the left side

$\frac{(k+1)(k+2)}{2}$

equals the right side

$\frac{(k+1)(k+2)}{2}$

Example

Step 1: Prove $P(a)$

Step 2: Prove $P(k) \Rightarrow P(k+1)$

Therefore,

$P(n) : 1 + 2 + 3 + \ldots + n = \frac{n(n+1)}{2}$

For all $n \geq 1$.

Is true.

Recap & Next Class

Today:

• Recursion costs
• Mathematical induction

Next class:

• Vector doubling
• ADTs
• Lists
Expanding vectors: why double?

Why is the array doubling strategy for Vector better than expanding the array one element at a time?

One-at-a-time expansion

Initial array.

Insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

New array; copy previous; insert element.

... ...

Insertion into an array

How much does array insertion cost?

It costs $O(1)$. In fact, lookup and insertion both cost $O(1)$.

Tradeoff: arrays are fixed size.

Copying an array

How much does an array copy cost?

It costs $O(1) \times m$, where m is the size of the original array.

$\approx O(m)$
One-at-a-time expansion costs?

(in the worst case, each time)

- Initial array.
- Copy previous.
- Insert element.

New array: copy previous; insert element.

\[O(m) + O(1) \approx O(m), \text{ where } m \text{ is the size of the original array.} \]

Cost is dominated by the size of the array being copied.

How many copies?

of copies for one-at-a-time expansion:

\[
1 \quad 2 \quad 3 \quad \ldots \quad +(n-1)
\]

Add (to 2nd, 3rd, 4th, ..., nth element)

Recall theorem:
\[
1 + 2 + 3 + \ldots + k = k(k+1)/2
\]

Sub n-1 for k:
\[
(n-1)(n-1+1)/2 = n(n-1)/2 = (n^2-n)/2
\]

One-at-a-time expansion costs \(\approx O(n^2) \)

Which is faster?

- Doubling expansion costs \(\approx O(n) \)
- One-at-a-time expansion costs \(\approx O(n^2) \)

Doubling is Vin Diesel-approved.
Activity

Prove: n cents can be obtained by using only 3-cent and 8-cent coins, for all \(n \geq 15 \).