
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 8
Asymptotic analysis

Topics

•Measuring time (and space)

Your to-dos

1. Lab 2, due Tuesday 9/27 by 10pm ([random] 
partner lab!)

2. Read before Wed: Bailey, Ch 7.1–7.2.

Announcements

•CS Colloquium this Friday, Sept 30 @ 2:35pm in 
Wege Auditorium (TCL 123)

Sonia Roberts (Northeastern University)
Sonia is a postdoctoral research associate working on 
soft sensors based on origami and knitted structures 
for soft robots at Northeastern University as part of 
the Institute for Experiential Robotics.

Sonia’s research focuses on the morphological design 
and  control  of  robots,  asking  questions  like  how 
detailed a model of the environment a robot needs, why 
a robot might need legs or wheels for different tasks, 
and  what  the  trade-off  is  between  robustness  and 
plasticity  when  implementing  aspects  of  a  robot's 
control  using  morphology  versus  actuated  degrees  of 
freedom.



More Scanner

Asymptotic analysis

We measure time and space similarly.
(I’ll focus on time today)

How do we know if an algorithm
is faster than another?

Why can’t we just measure “wall time”?



Why can’t we just measure “wall time”?

• Other things are happening at the same time
• Total running time often varies by input size
• Different computers usually produce different 

results!

Let’s just count “steps”, then

• If we count steps, then…
• what is a “step”?
• what about steps inside loops?

A little context

• How accurate do we need to be?
• If one algorithm takes 64 steps and another 

128 steps, do we need to know the precise 
number?

What we do

Instead of precisely counting steps, we usually 
develop an approximation of a program’s time 
or space complexity.

This approximation ignores small details and 
focuses on the big picture:

How do time and space requirements grow as a 
function of the size of the input?



Operations we assume to have unit cost
Accessing an element of an array.
arr[5]

Assigning a value to a variable.
int x = 10;

Reading a class field.
foo.some_data;

Elementary mathematical operations.
x + 1
y * z

Returning something.
return x;

Example
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for (int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) maxPos = i;
return maxPos;

}

• Can we count steps exactly? Do we even want to?
• if complicates counting

• Idea: overcount: assume if block always runs
• in the worst case, it does

• Overcounting gives upper bound on run time
• Can also undercount for the lower bound

Overcounting Example

……………………………………………………………………………………………………… line 1 cost: c1
…………………………………………………… line 2 cost: nc2

…………………………………………………………………………………… line 4 cost: nc4
……………………………………………………………………………………………………… line 5 cost: c5

Total cost: c1 + nc2 + nc3 + nc4 + c5

= c1 + n(c2 + c3 + c4) + c5

= n(c2 + c3 + c4) + c1 + c5

≈ O(n)
(as you shall see)

……………………………………………………………… line 3 cost: nc3

// pre: array length n > 0
public static int findPosOfMax(int[] arr) {

int maxPos = 0
for (int i = 1; i < arr.length; i++) 

if (arr[maxPos] < arr[i]) 
                 maxPos = i;

return maxPos;
}

We can do this analysis for the best, average, 
and worst cases.  We often focus on the best 
and worst cases.

Focus is on order of magnitude

Average case analysis is interesting and 
extremely useful, but it’s beyond the scope of 
this course.



Big-O notation

Let f and g be real-valued functions that are defined on the 
same set of real numbers.  Then f is of order g, written f(n) 
is O(g(n)), if and only if there exists a positive real number c 
and a real number n0 such that for all n in in the common 
domain of f and g,

|f(n)| ≤ c × |g(n)|, whenever n > n0.

We read this as: “f(n) is O(g(n))”
as “f of n is big-oh of g of n.”

English, please!

|f(n)| ≤ c × |g(n)|, whenever n > n0.

Intuition:
“at some point, f(n) is always bounded from 
above by g(n).”

What we want: some g(n) that is both:
• Always bigger than f(n) (after some value n0)
• Close to f(n)

If so, f is O(g(n)).

Consider the following functions, for x ≥ 1
• f(x) = 1
• g(x) = log2(x) // Reminder: if x=2^n, log2(x) = n
• h(x) = x
• m(x) = x log2(x)
• n(x) = x2

• p(x) = x3

• r(x) = 2x

Function growth Function growth



• Rule of thumb: ignore multiplicative constants
• Examples:
• Treat n and n/2 as same order of magnitude
• n2/1000, 2n2, and 1000n2 are “pretty much” just n2

• a0nk + a1nk-1 + a2nk-2 + … ak   is roughly nk

• The key is to find the most significant or 
dominant term 

• Ex: limx→∞ (3x4 -10x3 -1) = x4 (Why?)
• So 3x4 -10x3 -1 grows “like” x4

Function growth & Big-O

• In CS, we generally use log2

• But for asymptotic analysis, the base does 
not matter.

• Proof:
log2(x) = log10(x)/log10(2)
log10(2) • log2(x) = log10(x)
c • log2(x) = log10(x)
log2 and log10 are asymptotically the same!

Why base of log doesn’t matter

Think about the following for next class

Example

x + 1

What does this operation do?
(i.e., what is our desired “post condition”?)



Recap & Next Class

•Asymptotic analysis

Today:

Next class:
•Pre/post conditions 
•Recursion


