CSCI 136: Data Structures and Advanced Programming
Lecture 8
Asymptotic analysis
Instructor: Dan Barowy Williams

Topics
• Measuring time (and space)

Your to-dos
1. Lab 2, due Tuesday 9/27 by 10pm ([random] partner lab!)
2. Read before Wed: Bailey, Ch 7.1–7.2.

Announcements
• CS Colloquium this Friday, Sept 30 @ 2:35pm in Wege Auditorium (TCL 123)

Sonia Roberts (Northeastern University)
Sonia is a postdoctoral research associate working on soft sensors based on origami and knitted structures for soft robots at Northeastern University as part of the Institute for Experiential Robotics.

Sonia's research focuses on the morphological design and control of robots, asking questions like how detailed a model of the environment a robot needs, why a robot might need legs or wheels for different tasks, and what the trade-off is between robustness and plasticity when implementing aspects of a robot's control using morphology versus actuated degrees of freedom.
Asymptotic analysis

How do we know if an algorithm is faster than another?

Why can’t we just measure “wall time”?

We measure **time** and **space** similarly.

(I’ll focus on **time** today)
Why can’t we just measure “wall time”?

- Other things are happening **at the same time**
- Total running time **often varies by input size**
- **Different computers** usually produce **different results**!

Let’s just count “steps”, then

- If we count steps, then…
 - what is a “**step**”?
 - what about steps **inside loops**?

A little context

- How **accurate** do we need to be?
 - If one algorithm takes **64 steps** and another **128 steps**, do we need to know the precise number?

What we do

Instead of precisely counting steps, we usually develop an **approximation** of a program’s **time** or **space complexity**.

This approximation **ignores small details** and focuses on the big picture:

How do time and space requirements grow as a function of the size of the input?
Operations we assume to have **unit cost**

- Accessing an element of an array.

  ```java
  arr[5]
  ```

- Assigning a value to a variable.

  ```java
  int x = 10;
  ```

- Reading a class field.

  ```java
  foo.some_data;
  ```

- Elementary mathematical operations.

  ```java
  x + 1
  y * z
  ```

- Returning something.

  ```java
  return x;
  ```

Example

```java
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0
    for (int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;
}
```

- Can we count steps exactly? Do we even want to?
 - *if* complicates counting
- Idea: **overcount**: assume *if* block always runs
 - in the worst case, it does
- Overcounting gives **upper bound** on run time
- Can also **undercount** for the **lower bound**

Overcounting Example

```java
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0
    for (int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;
}
```

```
// pre: array length n > 0
public static int findPosOfMax(int[] arr) {
    int maxPos = 0
    for (int i = 1; i < arr.length; i++)
        if (arr[maxPos] < arr[i]) maxPos = i;
    return maxPos;
}
```

Focus is on **order of magnitude**

- We can do this analysis for the **best**, **average**, and **worst** cases. We often focus on the best and worst cases.

- Average case analysis is interesting and extremely useful, but it’s beyond the scope of this course.
Big-O notation

Let \(f \) and \(g \) be real-valued functions that are defined on the same set of real numbers. Then \(f \) is of order \(g \), written \(f(n) \) is \(O(g(n)) \), if and only if there exists a positive real number \(c \) and a real number \(n_0 \) such that for all \(n \) in the common domain of \(f \) and \(g \),

\[
|f(n)| \leq c \times |g(n)|, \text{ whenever } n > n_0.
\]

We read this as: “\(f(n) \) is \(O(g(n)) \)” as “\(f \) of \(n \) is big-oh of \(g \) of \(n \).”

English, please!

\[
|f(n)| \leq c \times |g(n)|, \text{ whenever } n > n_0.
\]

Intuition:
“at some point, \(f(n) \) is always bounded from above by \(g(n) \).”

What we want: some \(g(n) \) that is both:
- Always bigger than \(f(n) \) (after some value \(n_0 \))
- Close to \(f(n) \)

If so, \(f \) is \(O(g(n)) \).

Function growth

Consider the following functions, for \(x \geq 1 \)

- \(f(x) = 1 \)
- \(g(x) = \log_2(x) \) // Reminder: if \(x = 2^n \), \(\log_2(x) = n \)
- \(h(x) = x \)
- \(m(x) = x \log_2(x) \)
- \(n(x) = x^2 \)
- \(p(x) = x^3 \)
- \(r(x) = 2^x \)
Function growth & Big-O

- Rule of thumb: **ignore multiplicative constants**
- Examples:
 - Treat n and $n/2$ as same order of magnitude
 - $n^2/1000$, $2n^2$, and $1000n^2$ are “pretty much” just n^2
 - $a_0n^k + a_1n^{k-1} + a_2n^{k-2} + ... + a_k$ is roughly n^k
- The key is to find the **most significant or dominant term**
- Ex: $\lim_{x \to \infty} (3x^4 - 10x^3 - 1) = x^4$ (Why?)
 - So $3x^4 - 10x^3 - 1$ grows “like” x^4

Why base of log doesn’t matter

- In CS, we generally use \log_2
- But for asymptotic analysis, **the base does not matter**.
- Proof:
 - $\log_2(x) = \log_{10}(x)/\log_{10}(2)$
 - $\log_{10}(2) \cdot \log_2(x) = \log_{10}(x)$
 - $c \cdot \log_2(x) = \log_{10}(x)$
 - \log_2 and \log_{10} are **asymptotically the same!**

Think about the following for next class

Example

$x + 1$

What does this operation do? (i.e., what is our desired “post condition”?)
Recap & Next Class

Today:

- Asymptotic analysis

Next class:

- Pre/post conditions
- Recursion