
CSCI 136:
Data Structures

and
Advanced Programming

Instructor: Dan Barowy

Lecture 5
Abstraction / Generics

Topics

•Abstraction
•Generics
•Vectors

Your to-dos

1. Lab 1, due Tuesday 9/20 by 10pm.
2. Read before Wed: Bailey, all of Ch 2. 

Suggestion: read actively.

Active reading

Code provided in the book/in class is there for a reason: to
teach you a lesson!

Retype—don’t copy and paste—that code into your editor,
compile it, and run it.

In the process, you will notice detail you wouldn’t otherwise.
Programming is all about the detail.

I did not invent this idea. One famous practitioner…

Active reading

"I would advise you to read with a pen
in your hand, and enter in a little book
short hints of what you find […]; for this
will be the best method of imprinting
such particulars in your memory.”

—Benjamin Franklin

This is sometimes called “learning the hard way.”

Thing is, it's actually one of the easiest ways to learn.

Remember: learning feels inefficient.

Abstraction

The purpose of a class:

To “abstract away” implementation detail.

Abstraction

Abstraction is the process of removing irrelevant detail so
that a problem contains only necessary information.

Think of a class as having two sides.

Nim

Design so “user” never needs to “look inside”.

inside outside

Think of a class as having two sides.
The outside: A class should represent one concept, and
the class’s methods should support working with that one
concept.

E.g., Nim: Represents a Nim game board.

You can ask it to:

• set up a new game (the constructor),
• print out its board (displayBoard),
• check whether a move is valid (isValidMove),
• check whether the game is over (isGameOver),
• prompt the user to take a turn (takeATurn),
• etc.

Think of a class as having two sides.

The inside: A class should contain whatever code is
necessary to implement that one concept and nothing else.
E.g., Nim: Represents a Nim game board.

Stores:
•int[] of piles
•int representing the current player
•etc.
Ensures:
•Board is initialized correctly (new)
•Board is represented naturally to a user (displayBoard)
•Moves are valid (via isValidMove when taking a turn).
•etc.

Think of a class as having two sides.

Nim

int[] piles

int currentPlayer

1

4 0 1 5 3 0

isVal
idMov

e

takeATu
rndisplayBoard

isGameOver

new

Design so user never needs to “look inside”.

Hiding data inside a class is called:
encapsulation

Nim

isVal
idMov

e

takeATu
rndisplayBoard

isGameOver

new

int[] piles

int currentPlayer

1

4 0 1 5 3 0

Classes can encapsulate other classes!

This is how we construct complex software.

List<Person>

tail

clearadd

head

new

List<Person>Person p

Suppose we wanted to write a function
that reverses an array of ints.

Let’s try to do that together.

(code)

Suppose we wanted to write one
function that reverses an array of any

type.

Let’s try to modify our program.

(code)

Problem: Java has no (type safe) way
to express the idea of “any array.”

However, there is an alternative…

Generic types

A generic type is a placeholder (a type variable) for a type
to be specified later. Generic types permit the creation of
common algorithms and data structures (e.g., a generic
sequence), thus reducing code duplication. Generics
allow for data type abstraction.

In this class, we will focus on use.
Later, we will revisit how to make your own (i.e.,
definition)

Vector<E> is a sequence of any type E
Vector<E>

size

removeadd

get

[etc.]

E[] arr

indexOf

The Vector<E> class itself handles growing its internal
array if space is insufficient.

Vector is a generic class;
it works with any type.

Vector<E> v = new Vector<E>();

Generic class

Type parameter (fill in with the type you want)

https://williams-cs.github.io/cs136-f22-www/assets/JavaStructures/doc/structure5/index.html

The type parameter you
use must be a class type.

Vector<int> v = new Vector<int>();

Vector<Integer> v = new
Vector<Integer>();

Primitives (like int) do not work.
Use “boxed” types instead.

Suppose we wanted to write one
function that reverses any array.

Let’s try again.
any Vector

(code)

Recap & Next Class

•Abstraction
•Generics
•Vector

Today:

Next class:

•How Java computes things

