
Sample Final Exam
Solutions

Handout 9
CSCI 136: Fall 2022

Dec 9

This is a closed book exam. You have 150*† minutes to complete the exam. You may use the back of
the preceding page for additional space if necessary, but be sure to mark you answers clearly.

In some cases, there may be a variety of implementation choices. The most credit will be given to
the most elegant, appropriate, and efficient solutions.

Problem Points Description Score

1 10 Short Answer

2 10 Queues

3 10 StackSort

4 10 Heaps

5 10 Binary Trees

6 10 Hashing

7 10 Iterators

8 10 Time Complexity

9 10 Graphs

Total 90

I have neither given nor received aid on this examination.

Signature:

Name:

*In fact, 150 minutes is too little time for the practice exam! We are providing a larger- and harder-than-usual set of questions
to help you prepare for the exam. The actual final will be closer to 7 questions.

†Problem 10 is harder than any question you should expect to see on the final exam. But think about it anyway: you will be
surprised at how well a little stretching prepares you!

1



1. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Short Answer
Show your work and justify answers where appropriate.
a. A tree with n distinct elements is both a min-heap and a binary search tree. What must it

look like?

By the min heap property, the smallest node must be at the top; by the binary search tree
property all nodes must be right descendants of the root. Conventionally, in a binary heap,
we fill the tree in level order, so the next element to be filled is the left descendent of the root.
Therefore, in a binary heap, this tree can only have one element. If we relax the requirement
that the heap is filled in level order (not all heaps use implicit trees), then we can obtain a
tree with n elements. The above relationship needs to hold recursively for every node. So
the final tree must be a path; here is an example with three nodes:

b. Which tree traversal would you use to print an expression tree in human-readable form?

In-order traversal.

c. Which tree traversal would you use to evaluate an expression tree?

Post-order traversal. (You need the “solution” from both the left and right side before apply-
ing the operator.)

d. Of the following sort algorithms, which are most appropriate to sort a SinglyLinkedList:
insertion sort, selection sort, quicksort, merge sort?

The simplest is probably merge sort: breaking a linked list into two equal-sized parts can be
O(n) time, and merging two linked lists can be done in O(n) time.
Quicksort would require modifying the partition method to work in O(n) time on a linked
list. Then, after the two recursive quicksort calls, the two solutions and the pivot element
must be carefully grafted back together. This is also a reasonable solution, but requires
more modifications than merge sort.
For insertion sort or selection sort, the sorting method would have to be carefully modified
to allow linked list items to be swapped efficiently. (Using get() to swap two items will
lead to O(n3) rather than O(n2) running time.) This modification likely requires carefully
maintaining two pointers, but is probably ultimately possible.

e. When we rewrite a recursive algorithm to be iterative, we generally must introduce which
kind of data structure to aid in simulating the recursion?

A stack
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2. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Queues
Recall that the Queue interface may be implemented using an array to store the queue elements.
Suppose that two int values are used to keep track of the ends of the queue. We treat the array
as circular: adding or deleting an element may cause the head or tail to “wrap around” to the
beginning of the array.
You are to provide a Java implementation of class CircularQueueArray by filling in the bod-
ies of the methods below. Note that there is no instance variable which stored the number of
elements currently in the queue; you must compute this from the values of head and tail. You
may not add any additional instance variables.

public class CircularQueueArray {
// instance variables
protected int head, tail;
protected Object[] data;

// constructor: build an empty queue of capacity n
public CircularQueueArray(int n) {

head = 0;
tail = 0;
data = new Object[n];
for(int i = 0; i < n; i++) {

data[i] = null;
}

}

// pre: queue is not fill
// post: adds value to the queue
public void enqueue(Object value) {

data[tail] = value;
tail = (tail + 1) % data.length;

}
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Name:

// pre: queue is not empty
// post: removes value from the head of the queue
public Object dequeue() {

Object retVal = data[head];
data[head] = null;
head = (head + 1) % data.length;
return retVal;

}

// post: return the number of elements in the queue
public int size() {

if (head <= tail) {
return tail - head;

}

return data.length - (head - tail);

}

// post: returns true iff queue is empty
public boolean isEmpty() {

return head == tail && data[head] == null;

}

// post: returns true iff queue is full
public boolean isFull() {

return head == tail && data[head] != null;

}
}
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Name:

3. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stacks
Suppose you are given an iterator that will let you access a sequence of Comparable elements.
You would like to sort them, but the only data structure available to you is an implementation of
the Stack interface in the structure5 package (say, StackList), and memory constraints only
allow you to make a small (constant) number of stacks. Because the elements are available only
through an Iterator, so you must process each item as it is returned by the next() method of
the Iterator. The sort method should return a Stack containing the sorted elements, with the
smallest at the top of the stack. Please fill in the body of the method.

public static <E extends Comparable<E> > Stack<E> StackSort(Iterator<E> iter) {
// pre: iter is an Iterator over a structure containing objects of type E
// post: a Stack is returned with the elements sorted, smallest on top

Stack<E> retStack = new StackList<E>();
Stack<E> tempStack = new StackList<E>();
// strategy: keep retStack sorted each iteration by putting
// next() into its proper location in the stack.
// We use tempStack to temporarily hold everything smaller than next(),
// then push next, then restore the smaller elements from tempStack.
// (draw a picture!)
while (iter.hasNext()) {

E cur = iter.next();
// pop everything smaller than cur from retStack
while (!retStack.empty() && cur.compareTo(retstack.peek()) > 0) {

tempStack.push(retStack.pop());
}
retStack.push(cur);
while (!tempStack.empty()) {

retStack.push(tempStack.pop());
}

}
return retStack;

}
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Name:

4. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Heaps
Recall the definition of a min-heap, a binary tree in which each node’s value is no bigger than that
of each of its descendants. For the rest of this question, we presume the Vector implementation
of heaps (class VectorHeap). Consider the following tree, which is a min-heap.

1

2

5

21 233

3

55 8

13

89

144

34

a. Show the order in which the elements would be stored in the Vector underlying our VectorHeap.

1 2 13 5 3 89 34 21 233 55 8 144
0 1 2 3 4 5 6 7 8 9 10 11

b. Show the steps involved in adding the value 4 to the heap. Use drawings of the tree, not
the vector.

1

2

5

21 233

3

55 8

13

89

144 4

34

1

2

5

21 233

3

55 8

13

4

144 89

34
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21 233

3

55 8

4
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144 89

34
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Name:
c. Using the original tree (not the one with the 4 added), show the steps involved in removing the
minimum value of the heap.

1, the minimum value, is immediately removed after this step (so will not be in future trees):

144

2

5

21 233

3

55 8

13

89

(1)

34

2

144

5

21 233

3

55 8

13

89 34

(Continued on next page:)
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2

3

5

21 233

144

55 8

13

89 34

2

3

5

21 233

8

55 144

13

89 34
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d. Why is the VectorHeap implementation of a priority queue better than one that uses a linked
list implementation of regular queues, modified to keep all items in order by priority? Hint: Your
answer should compare the complexities of the add and remove operations.

The VectorHeap implementation requires O(log n) time to add and remove.
A linked list that keeps items in order requires O(n) time to add, since all items must be scanned
to find the correct location. However, removing the minimum-priority item is O(1) time.
If we add and then remove O(n) items, the VectorHeap requires O(n log n) total time for all
operations, whereas the sorted linked list requires O(n2) time.
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Name:

5. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Binary Trees
Suppose we have a BinaryTree that contains only Comparable values.
a. It is often useful to find the minimum and maximum values in the tree. Implement the method
maximum as a member of class BinaryTree. As a guide, relevant sections of BinaryTree.java
from the structure5 package are included after this question. Your method should return the
Comparable that is the maximum value in the tree. It should return null if called on an empty
tree.

public Comparable maximum() {
// pre: the values in this tree are all Comparable
// post: the maximum value in the tree is returned

if(isEmpty()) {
return null;

}

Comparable maxLeft = left.maximum();
Comparable maxRight = right.maximum();

Comparable maxChild;
if(maxLeft != null && maxLeft.compareTo(maxRight) > 0 ) {

maxChild = maxLeft;
else {

maxChild = maxRight;
}

Comparable thisVal = (Comparable) val;

if(maxChild != null && maxChild.compareTo(thisVal) > 0) {
return maxChild;

} else {
return thisVal;

}

}

b. What is the worst-case complexity of maximum on a tree containing n values?

O(n)

c. What is the complexity of maximum on a full tree containing n values?

O(n)
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Name:
d. Consider the following method, which I propose as a member of class BinaryTree:

public boolean isBST() {
// post: returns true iff the tree rooted here is a binary search tree
if (this == EMPTY) return true;
return left().isBST() && right().isBST();

}

As written, this method will not always return the correct value. Explain why, then provide a
correct method. You may use minimum() and maximum() from part (a), as well as any other
methods of BinaryTree.

A binary search tree must have value ≥ all of its left descendants, and value < all of its right
descendants. This method does not compare any values.

public boolean isBST() {

if(this == EMPTY) {
return true;

}

Comparable compVal = (Comparable) val;

if(compVal.compareTo(left.maximum()) < 0) {
return false;

}

if(compVal.compareTo(right.minimum()) >= 0) {
return false;

}

return left.isBST() && right.isBST();
}
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Name:

public class BinaryTree {
protected Object val; // value associated with node
protected BinaryTree parent; // parent of node
protected BinaryTree left; // left child of node
protected BinaryTree right; // right child of node
// The unique empty node
public static final BinaryTree EMPTY = new BinaryTree();

// A one-time constructor, for constructing empty trees.
private BinaryTree() {

val = null; parent = null; left = right = this;
}

// Constructs a tree node with no children. Value of the node
// is provided by the user
public BinaryTree(Object value) {

val = value; parent = null; left = right = EMPTY;
}

// Constructs a tree node with no children. Value of the node
// and subtrees are provided by the user
public BinaryTree(Object value, BinaryTree left, BinaryTree right) {

this(value);
setLeft(left);
setRight(right);

}

// Get left subtree of current node
public BinaryTree left() {

return left;
}

// Get right subtree of current node
public BinaryTree right() {

return right;
}

// Get reference to parent of this node
public BinaryTree parent() {

return parent;
}

// Update the left subtree of this node. Parent of the left subtree
// is updated consistently. Existing subtree is detached
public void setLeft(BinaryTree newLeft) {

if (isEmpty()) return;
if (left.parent() == this) left.setParent(null);
left = newLeft;
left.setParent(this);

}

// Update the right subtree of this node. Parent of the right subtree
// is updated consistently. Existing subtree is detached
public void setRight(BinaryTree newRight) {

if (isEmpty()) return;
if (right.parent() == this) right.setParent(null);
right = newRight;
right.setParent(this);
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}

// Update the parent of this node
protected void setParent(BinaryTree newParent) {

parent = newParent;
}

// Returns the number of descendants of node
public int size() {

if (this == EMPTY) return 0;
return left().size() + right.size() + 1;

}

// Returns reference to root of tree containing n
public BinaryTree root() {

if (parent() == null) return this;
else return parent().root();

}

// Returns height of node in tree. Height is maximum path
// length to descendant
public int height() {

if (this == EMPTY) return -1;
return 1 + Math.max(left.height(),right.height());

}

// Compute the depth of a node. The depth is the path length
// from node to root
public int depth() {

if (parent() == null) return 0;
return 1 + parent.depth();

}

// Returns true if tree is full. A tree is full if adding a node
// to tree would necessarily increase its height
public boolean isFull() {

if (this == EMPTY) return true;
if (left().height() != right().height()) return false;
return left().isFull() && right().isFull();

}

// Returns true if tree is empty.
public boolean isEmpty() {

return this == EMPTY;
}

// Return whether tree is complete. A complete tree has minimal height
// and any holes in tree would appear in last level to right.
public boolean isComplete() {

int leftHeight, rightHeight;
boolean leftIsFull, rightIsFull, leftIsComplete, rightIsComplete;
if (this == EMPTY) return true;
leftHeight = left().height();
rightHeight = right().height();
leftIsFull = left().isFull();
rightIsFull = right().isFull();
leftIsComplete = left().isComplete();
rightIsComplete = right().isComplete();
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// case 1: left is full, right is complete, heights same
if (leftIsFull && rightIsComplete &&

(leftHeight == rightHeight)) return true;
// case 2: left is complete, right is full, heights differ
if (leftIsComplete && rightIsFull &&

(leftHeight == (rightHeight + 1))) return true;
return false;

}

// Return true iff the tree is height balanced. A tree is height
// balanced iff at every node the difference in heights of subtrees is
// no greater than one
public boolean isBalanced() {

if (this == EMPTY) return true;
return (Math.abs(left().height()-right().height()) <= 1) &&

left().isBalanced() && right().isBalanced();
}

// Returns value associated with this node
public Object value() {

return val;
}

}

15



Name:

6. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Hashing
a. What is meant by the “load factor” of a hash table?

Number of elements divided by the number of slots.

b. We take care to make sure our hash functions return the same hash code for any two equivalent
(by the equals() method) objects. Why?

Hash codes are often used to implement a Map using a hash table. The get method of Map asks
the user to look up a key that is .equals() to the requested key. We must ensure that the hash
codes are the same so that get() looks in the correct position.
(There would be issues with contains() as well, and even put(), which is required to search
for duplicate values.)

c. A hash table with ordered linear probing maintains an order among keys considered during
the rehashing process. For example, we may store the keys in a run in sorted order in the hash
table (while ensuring that each key occurs on or after the slot it initially hashed to).
When the keys are encountered, say, in increasing order, the performance of a failed lookup
approaches that of a successful search. Describe how a key might be inserted into the ordered
sequence of values that compete for the same initial table entry.

When we detect a collision, we will shift the remainder of the run to make room for the new
object so that it can be stored in sorted order. (Another way of saying this: we will treat the run
as an OrderedVector, and place each new item into the correct place within the run as if it were
shorted, shifting the other elements down.)
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Name:
d. Is the hash table constructed using ordered linear probing as described in part (c) really just
an ordered vector? Why or why not?

No; the hash table will not be sorted by the keys. It will only be sorted within runs.

e. One means of potentially reducing the complexity of computing the hash code for Strings is
to compute it once – when the String is constructed. Future calls to hashCode() would return
this precomputed value. Since Java Strings are immutable, that is, they cannot change once
constructed, this could work. Do you think this is a good idea? Why or why not?

Probably not. Many (if not most) Strings are created and used without ever being stored in a
hash table. If we compute the hash code every time we create the string, then all strings are
forced to pay this high cost.
(That said, of course, in a use case where most Strings get hashed repeatedly, this would save
time.)
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7. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Iterators
Given a pair of iterators that return data in sorted order, a Mergerator merges them into a
single iterator that returns all data in sorted order. Here is a simple example of how it might be
used:
String a[] = { "brown", "cow", "moo" };
String b[] = { "another", "sentence", "sorted" };

AbstractIterator<String>> iter1 = ArrayIterator<String>(a);
AbstractIterator<String>> iter2 = ArrayIterator<String>(b);

Iterator<String> merger = new Mergerator(iter1,iter2);
while (merger.hasNext()) {
System.out.println(merger.next());

}

This code prints out:

another brown cow moo sentence sorted

This problem asks about implementing the Mergerator class to provide the AbstractIterator
methods: reset(), next(), hasNext(). (You do not need to implement get(); also, your
next() method should not rely on get().)

Complete the code for the Mergerator class. Declare any instance variables you will use in
your class and implement the constructor and methods (reset, hasNext, and next). Your class
should be parameterized by the type E of elements that will be returned by the underlying itera-
tors.
public class Mergerator <E extends Comparable<E>> extends AbstractIterator<E> {

AbstractIterator<E> iter1;
AbstractIterator<E> iter2;

public Mergerator(AbstractIterator<E> theIter1, AbstractIterator<E> theIter2) {
iter1 = theIter1;
iter2 = theIter2;

}

public void reset() {

iter1.reset();
iter2.reset();

}
public boolean hasNext() {

return iter1.hasNext() || iter2.hasNext();

}
public E next() {
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if(iter1.hasNext() && get() == iter1.get()) {
return iter1.next();

} else {
return iter2.next();

}

}
public E get() {

if(iter1.hasNext() &&
(!iter2.hasNext() || iter1.get().compareTo(iter2.get())) <= 0) {
return iter1.get();

} else {
return iter2.get();

}

}
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Name:

8. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Time Complexity
Suppose you are given n lists, each of which is of size n and each of which is sorted in increasing
order. We wish to merge these lists into a single sorted list L, with all n2 elements. For each
algorithm below, determine its time complexity (Big O) and justify your result.
a. At each step, examine the smallest element from each list; take the smallest of those elements,
remove it from its list and add it to the end of L. Repeat until all input lists are empty.

Finding the smallest element of all lists is O(n) time. We repeat this O(n2) times, for O(n3) total
time.

b. Merge the lists in pairs, obtaining n
2 lists of size 2n. Repeat, obtaining n

4 lists of size 4n, and so
on, until one list remains.

Merging two lists of size k requires O(k) time (as discussed in class). Therefore, merging all pairs
of lists (to obtain n/2 lists of size 2n) requires O(n2 time; similarly, merging all pairs of lists of
size 2n to obtain n/4 lists of size 4n requires O(n2) time, and so on.
Each time we merge all pairs, the number of lists is divided by two. We begin with n lists, and
end up with 1 list, so we need to merge all pairs O(log n) times.
We perform O(log n) merges, each of which takes O(n2) time, for O(n2 log n) time in total.
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Name:

9. (10 points) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Graphs
a. Recall the Trie structure you implemented for the Lexicon lab. It was a general tree, where a
node in the tree could have an arbitrary number of children. Trees are nothing more than graphs
with some restrictions on the edges allowed. You could store the same information in a Graph
by making a Vertex for each tree node and adding Edges representing the links to the children.
Which Graph implementation would you use for this, and why? How does its time and space
complexity compare to your Trie implementation?

I would use an adjacency list implementation. The number of edges in this graph is generally
going to be much less than the number of vertices squared, so this is the space efficient choice.
Furthermore, for the lexicon lab, we traverse the tree by iterating over the children of a node;
the child whose stored letter is equal to the next character in the word is the next child we
visit. This corresponds to iterating over the neighbors of a vertex in a graph. The adjacency list
implementation is significantly more efficient at iterating over all neighbors of a vertex, so it is
more time efficient as well.
The space efficiency of an adjacency list graph with n vertices and m edges is O(n+m). The space
efficiency of a trie with n′ nodes, that have a total of m′ children, is O(n′ +m′). Note that n = n′

and m = m′, so the space efficiency is the same.
The time to obtain a child of a node in the Trie with d children is O(d). The time to iterate
through all neighbors of a node in an adjacency list with d incident edges is O(d). Therefore, the
time to traverse also remains the same.
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