
CS136: Data Structures &
Advanced Programming
Fall 2020
Williams College

Today
Deep dive into Vector class, including:

● Where to find the source code
● Important implementation details
● Usage (especially when compared to arrays)

Vectors: Examining the Code
We’ll focus on Structure5:

● Code associated with the textbook is publicly available
○ bailey.jar - archive used by javac
○ structure-source.tgz - compressed bundle of Java text files

■ After uncompressing, src/structure5 has the code we want!
● Javadoc for the code is publicly available too!

http://www.cs.williams.edu/~bailey/JavaStructures/Software.html
http://www.cs.williams.edu/~bailey/JavaStructures/Software_files/bailey.jar
http://www.cs.williams.edu/~bailey/JavaStructures/Software_files/structure-source.tgz
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/index.html

Vector<E> API (select methods)
● get(int), set(int, E)
● firstElement(),

lastElement()
● contains(E), indexOf(E)
● add(E), addElement(E),

add(int,E)
● remove(E)
● clear()

● capacity()
● ensureCapacity()

● toString()

Vector Details: Storing Data
Internally, the Vector class stores an array: Object[] elements;

● The array is not necessarily filled
● We keep track of the number of current elements in the array

using an explicit elementCount variable
○ How do we ensure that elementCount stays in sync with our actual count?
○ What happens if we try to add an element but the array is full?

● Overloaded constructor(s) allow us to specify an initial array size
(we’ll call this the Vector’s capacity)
○ Default capacity used if none is provided

Vector Details: get(int)/set(int, E)
Arrays use bracket notation to access and update elements at a
given index. Vectors use methods.

● We can’t use bracket notation for non-array objects. We must call
methods. But internally :

○ v.get(int) uses bracket notation to access elementData[i]

○ v.set(int, E) uses bracket notation to update elementData[i]

Get/set cost is the same as the cost of accessing/updating an array.

Vector Details: add(E)
Arrays don't have any notion of "appending”. add(E) is “Vector append”

● What does it mean to “append” to a Vector?

When we think about performance, we often care most about the
"worst case"
● What are the "worst cases" that we need to consider when

appending to a Vector?
● If the Vector’s internal array has room, we can just place the element at the first

free index, and increment the count
● If the Vector’s internal array is full, we need to GROW! This means creating a

larger array, copying everything into it, then adding the new element.
● How big should we make the new array?

Vector Details: add(int, E)
Arrays don't have any notion of "inserting”. add(int, E) inserts at index i

● What does it mean to insert into the middle of a Vector?

Unlike an array that overwrites the element at a given index, a Vector
“creates room”, then adds the element in that newly emptied space

● How do we create room in the Vector’s internal array?

● Shift all elements *after* the insertion point one space to the right

Vector Details: contains(E)
contains(E) determines if a value appears in the Vector

● What does it mean for a value to "appear in" a Vector?
○ elementData[i].equals(obj) == true (for some index i)
○ Note: indexOf(E) is similar, except it returns the index i, or -1 if not found

● What if there are multiple copies of the target value?

● No worries! We just return true as soon as we find the first occurrence

● Note that contains uses .equals, and we can only call .equals on
Objects.

○ We can’t store primitive values in an array!

Vector Details: remove(E)
remove(E) removes the first occurrence of a value from the Vector

● Similar to contains: search using .equals to find a match

● What if there are multiple copies of the target value?

● Delete the first. We stop as soon as we remove the first occurrence

Vector Details: size()
Vector size is different than Vector capacity.

● Size is how many elements are currently in the underlying Object
array

● Capacity is the length of the underlying array

● How do they differ?
● The array may not be full! (Note: size <= capacity)
● As we add and delete elements, size will fluctuate, but array size cannot change.
● We may “grow” or “shrink” our array by creating a new array and copying items

● When/how we do this has huge implications on performance! We’ll dive
into this in another video

Example: Revisiting Bags
Let’s revisit the generic ”Bag” data structure we saw in our last video

General idea: We create an Object array that stores our “stuff” (type E)
● We can than add things to our bag, search through our bag, and

remove stuff from our bag

Are there any limitations of our Bag?

● Can’t have an array of type E
○ Need to cast!

Example: Revisiting Bags

BagOfHolding: a Bag with magically enhanced capacity!

● It’s easier to write, and now I can hold all my stuff!

Let’s Look at Code
● Bag.java
● BagOfHolding.java

Summary
Vectors are random-access data structures, like an array, but they
add new functionality
● Inserting/Removing
● Resizing
● Searching
● Support for “generic” types

The Vector class implements many functions that we will revisit when
we discuss the abstract concept of a “List”

