CSCI 136
Data Structures &
Advanced Programming

Tree Traversals

Tree Traversal Methods

Tree Traversals

* In linear structures, there are only a few basic
ways to traverse (visit) the elements of the
data structure

e Start at one end and visit each element

 Start at the other end and visit each element
* How do we traverse binary trees!
* (At least) four reasonable mechanisms

* We imagine that we want to do some work at
each node

* We call that work processing the node

Tree Traversals

Levi

/N

Jonathan Sarah

/N N

Ben Kelly Scarlet

In-order: Ben, Jonathan, Kelly, Levi, Sarah, Scarlet
Pre-order: Levi, Jonathan, Ben, Kelly, Sarah, Scarlet
Post-order: Ben, Kelly, Jonathan, Scarlet, Sarah, Levi,
Level-order: Levi, Jonathan, Sarah, Ben, Kelly, Scarlet

/N
7

* Pre-order 2/ \3

e Each node is processed before any children.
Process node, process left subtree, then process

right subtree. (node, left, right)
o +%237

Tree Traversals

* |n-order
e Each node is processed after all nodes in left
subtree are processed and before any nodes in

right subtree. (left, node, right)
o 2%3+7

(“pseudocode”)

+
Tree Traversals ./ \7
/N
2 3
e Each node is processed after all nodes in left subtree
are processed and before any nodes in right subtree.

(left, node, right)
o 2%3+7

* |n-order

* Aside: If processing means printing, we could also
print a "(" before we process a subtree and a ")"
after we process the subtree (skip leaves)

* (2%3)+7)

(“pseudocode”)

/+\
* 7
/N
2 3

Tree Traversals

e Post-order

* Each node is processed after its children. Process all
nodes in left subtree, then all nodes in right subtree,
then node itself. (left, right, node)

o 23*7+
* Post-order = PostScript order = RPN

* Level-order (not obviously recursive!)

* Nodes at level i are processed before nodes at level
i+ 1. (process nodes left to right on each level)

o +%723
(“pseudocode”)

Tree Traversals

public void pre-order (BinaryTree t) {
if(t.isEmpty()) return;
process(t); // some method
preOrder(t.left());
preOrder(t.right());

For in-order and post-order: just move
process(t)!

But what about level-order???

/ N\
/ N\

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue Violet
/\

Orange Yellow

N

Indigo Red

L evel-Order Traversal

Green

/\

Blue *_Violet
T

Orange Yellow

N

Indigo Red

-

GB

L evel-Order Traversal

Green

/\

Blue Violet

T
Orange Yellow

N

Indigo Red

GBV

L evel-Order Traversal

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

Indigo Red

GBVOY

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N
Indigo

GBVOYI

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

GBVOYIR

L evel-Order Traversal

Green

/\

Blue Violet

S

Orange Yellow

N

Indigo Red

L evel-Order Traversal

/\
Blue Violet 1
T~ Green
Orange Yellow ; 1
/\ todo queue

Indigo Red

L evel-Order Traversal

Green 1
/\ .
Violet
Blue Violet =
/\ Blue
Orange Yellow 1
/\ todo queue
Indigo Red

L evel-Order Traversal

Green
/\
Blue 1
Py Violet
Orange Yellow 1
/\ todo queue
Indigo Red

GB

L evel-Order Traversal

Green 1
/\
Yellow
Blue Violet
Py Orange
Orange Yellow 1
/\ todo queue
Indigo Red

GBV

Level-Order Traversal

Green

Blue Violet

todo queue

GBVO

L evel-Order Traversal

Green 1
/\
Red
Blue Violet =
Py Indigo
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOY

L evel-Order Traversal

Green
/\
Blue Violet l
Py Red
Orange Yellow 1
/\ todo queue
Indigo

GBVOYI

L evel-Order Traversal

Green
/\
Blue Violet
/\ L
Orange Yellow 1
/\ todo queue
Indigo Red

GBVOYIR

L evel-Order Tree Traversal

public static <E> void levelOrder (BinaryTree<E> t) {
if (t.isEmpty()) return;

// The queue holds nodes for in-order processing
Queue<BinaryTree<E>> g = new QueuelList<BinaryTree<E>>();

g.enqueue(t); // put root of tree in queue

while(!qg.isEmpty()) {
BinaryTree<E> next = g.dequeue();
process (next);
if(!next.left().isEmpty()) g.enqueue(next.left());
if(!next.right().isEmpty()) g.enqueue(next.right());

Pre-Order Tree Traversal

public static <E> void preOrder (BinaryTree<E> t) {
if (t.isEmpty()) return;

// The stack holds nodes for in-order processing
Stack<BinaryTree<E>> st = new StackList<BinaryTree<E>>();

st.push(t); // put root of tree in stack

while(!st.isEmpty()) {
BinaryTree<E> next = st.pop();

process (next);
if(!next.right().isEmpty()) st.push(next.right());

if(!next.left().isEmpty()) st.push(next.left());

Pre-Order Tree Traversal

s this really a pre-order traversal?
How could we convince ourselves!?
Let's prove it by induction!

Claim: Stack-based preOrder(t) processes the
nodes of the tree rooted at t in the same order
as the recursive preOrder(t) method

ldea: Induction on size of t

Base Case: t.size() =0

Both methods return, doing no other work.

Pre-Order Tree Traversal

Induction Hypothesis
For some n > 0, iterative preOrder(t) processes the
nodes of t in the same order as recursive preOrder(t)
for all trees t having fewer than n nodes

Inductive Step

Now show that iterative preOrder(t) processes the
nodes of t in the same order as recursive preOrder(t)

for all trees t having n nodes

* Both methods process the root t first

Pre-Order Tree Traversal

recursive preOrder(t) then processes the left sub-tree
of t before the right subtree of t

Iterative preOrder(t) will then pop t.left off the stack

But now both methods are working with t.left, which
has fewer nodes than t, and so both methods, by
induction, process nodes in the same order

* Note that iterative preOrder() will not pop t.right off its
stack until all of the descendants of t.left have been
processes

Then they both process t.right in the same order

(again, by induction)

Summary & Observations

We've seen 4 reasonable traversal methods for
trees

They can be efficiently implemented using
* A queue to guide a level-order traversal, or

* A stack to guide a pre-order traversal

By storing different information on the stack, we can
turn our pre-order traversal into either a post-order
or an in-order traversal.

* We'll explore this in the next video....

