
CSCI 136
Data Structures &

Advanced Programming

Recursion & Induction
on Trees

Recursion & Induction
on Trees

Reasoning About Trees
Recall: A BinaryTree T is either
• Empty, or
• Consists of a root along with two

BinaryTrees
• Left and right subtrees of T

If both the left and right subtrees of T are
empty, we call T a leaf
How do we establish properties of trees
and algorithms on trees?
• Induction!

An Example
Prove

Number of nodes at depth d≥0 is at most 2d.
Idea: Induction on depth d of nodes of tree
Base case: d= 0: 1 node. 1 = 2o✓

Induction Hyp.: For some d ≥ 0, there are at most
2d nodes at depth d.
Induction Step: Consider depth d+1. There are at
most 2 child nodes at depth d+1 for every node
at depth d
Therefore There are at most 2*2d = 2d+1 nodes✓

Strong Induction!
Often, we'll need to use strong induction
Principle of Strong Induction

Let P0, P1, P2, ... be a sequence of statements, each of
which could be either true or false. Suppose that, for
some k ≥ 0
• P0, P1, ..., Pk are true, and
• For every n ≥ k, if P0, P1, ..., Pn are true, then Pn+1 is

true
Then all of the statements are true!

Why?
• Induction is often on size or height of tree
• Sizes/heights of subtrees can be much smaller

than those of the tree

Example : Correctness of size()
Recall the size() method for BinaryTree

// Returns the number of descendants of node
public int size() {

if (isEmpty()) return 0;
return left().size() + right().size() + 1;

}

Let's try to prove that size() works correctly
Proof: Induction on number of descendants of
node
• Note: Node is descendent of itself!
Base Case: n = 0 (Empty tree!)
• method correctly returns 0 ✓

Example : Correctness of size()
// Returns the number of descendants of node
public int size() {

if (isEmpty()) return 0;
return left().size() + right().size() + 1;

}

Induction Hypothesis
For some n ≥ 1, size() correctly returns the number of
descendants of a node for all nodes with at most n-1
descendents.

Induction Step
Now show that if node has n descendants, then size()
returns the correct value.

Example : Correctness of size()
Induction Step

Now show that if node has n descendants, then size()
returns the correct value.

Proof
• Since n ≥ 1, the second return statement is

executed
return left().size() + right().size() + 1;

• Since each of left and right have fewer than n
nodes, by the I.H., size() returns the correct
number of descendants of left and right

• Adding them, plus 1 for node itself, gives the
correct number of descendants of node ✓

Practice Problems
Prove
• The number of nodes at depth n is at most 2n. ✓
• The number of nodes in tree of height n is at

most 2(n+1)-1.
• The size() method works correctly ✓
• The height() method works correctly
• The isFull() method works correctly
• The isComplete() method works correctly
• Evaluate correctly evaluates an expression tree

Correctness of height() Method
// Returns the height of node
public int height() {
if (isEmpty()) return -1;
return 1 + Math.max(left.height(),right.height());

}

Proof: Induction on the height of node
Base Case: h = -1 (Empty tree!)
• method correctly returns -1 ✓
Induction Hypothesis

For some h ≥ 0, height() correctly returns the height of
node for all nodes with height at most h-1.

Correctness of height() Method
Induction Step

Now show that if node has height h, then height()
returns the correct height value for node.

Proof
• Since h > -1, the second return statement is executed

return 1 + Math.max(left.height(),right.height());

• Since each of left and right have height at most h-1,
by the I.H., height() returns the correct heights of left
and right

• The height of node is then one more than the larger of
the heights of left and right

• This is exactly the value returned by the method ✓

Summary and Observations
Binary trees are naturally recursive structures
• Many tree algorithms are recursive
• Establishing properties of such algorithms

is often done via induction
• Typically using strong induction
• Induction is frequently based on size or height

of the tree
Practice with recursion and induction on
trees will improve programming/design skills

