CSCI 136
Data Structures &
Advanced Programming

Recursion & Induction
on lrees



Recursion & Induction
on lrees



Reasoning About Trees

Recall: A BinaryTree T is either
e Empty, or
* Consists of a root along with two

BinaryTrees
e Left and right subtrees of T

It both the left and right subtrees of T are
empty, we call T a leaf

How do we establish properties of trees
and algorithms on trees?

e Induction!



An Example

Prove
Number of nodes at depth d=0 is at most 29.

ldea: Induction on depth d of nodes of tree

Base case: d=0: 1 node. 1 =2°/

Induction Hyp.: For some d = 0, there are at most
29 nodes at depth d.

Induction Step: Consider depth d+1. There are at
most 2 child nodes at depth d+1 for every node
at depth d

Therefore There are at most 2*2d = 29+1 nodes v



Strong Induction!

Often, we'll need to use strong induction

Principle of Strong Induction

Let Py, P4, Py, ... be a sequence of statements, each of
which could be either true or false. Suppose that, for
some k =0

e Py, Py, ..., P.aretrue, and
 Foreveryn =k, ifPy Py, ..., P,aretrue, then P4 is
true

Then all of the statements are true!
Why?
* Induction is often on size or height of tree

 Sizes/heights of subtrees can be much smaller
than those of the tree



Example : Correctness of size()

Recall the size() method for BinaryTree

// Returns the number of descendants of node
public int size() {

if (isEmpty()) return 0;

return left().size() + right().size() + 1;

}
Let's try to prove that size() works correctly

Proof: Induction on number of descendants of
node

* Note: Node is descendent of itself!
Base Case: n = 0 (Empty treel)
 method correctly returns O



Example : Correctness of size()

// Returns the number of descendants of node
public int size() {

if (isEmpty()) return 0;

return left().size() + right().size() + 1;

}
Induction Hypothesis

For some n = 1, size() correctly returns the number of
descendants of a node for all nodes with at most n-1
descendents.

Induction Step

Now show that if node has n descendants, then size()
returns the correct value.



Example : Correctness of size()

Induction Step

Now show that if node has n descendants, then size()
returns the correct value.

Proof

e Sincen > 1, the second return statement is
executed
return left().size() + right().size() + 1;
e Since each of 1eft and right have fewer than n
nodes, by the I.H., size() returns the correct
number of descendants of 1eft and right

e Adding them, plus 1 for node itself, gives the
correct number of descendants of node



Practice Problems

Prove

The number of nodes at depth n is at most 2".

The number of nodes in tree of height n is at
most 2(n+1)-1,

ne size() method works correctly

ne height() method works correctly

ne isFull() method works correctly

ne isComplete() method works correctly
Evaluate correctly evaluates an expression tree



Correctness of height() Method

// Returns the height of node
public int height() {
if (isEmpty()) return -1;
return 1 + Math.max(left.height(),right.height());

}
Proof: Induction on the height of node

Base Case: h = -1 (Empty tree!)
 method correctly returns -1

Induction Hypothesis

For some h = 0, height() correctly returns the height of
node for all nodes with height at most h-1.



Correctness of height() Method

Induction Step

Now show that if node has height h, then height()
returns the correct height value for node.

Proof

Since h > -1, the second return statement is executed
return 1 + Math.max(left.height(),right.height());

Since each of 1eft and right have height at most h-1,
by the |.H., height() returns the correct heights of 1eft

and right

The height of node is then one more than the larger of
the heights of 1eft and right

This is exactly the value returned by the method



Summary and Observations

Binary trees are naturally recursive structures
 Many tree algorithms are recursive

» Establishing properties of such algorithms
is often done via induction

o Typically using strong induction
 Induction is frequently based on size or height
of the tree
Practice with recursion and induction on

trees will improve programming/design skills



