CSCI 136
Data Structures &
Advanced Programming

Williams College

Linear Structures

e General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices

* Noget(int 1),set(int 1, E value)
* No add(int 1), remove(int 1)

* Insight: By limiting access, we can actually gain
some utility—linear structures are useful
building blocks with important use cases!

Examples: Dining Hall

* FIFO: First In — First Out (Queue)
* Line at dining hall

e LIFO: Last In — First Out (Stack)

* Pile of plates or cups at dining hall

Examples: Computer Science

* FIFO: First In — First Out (Queue)

e Data packets arriving at a router

e LIFO: Last In — First Out (Stack)

* Java Virtual Machine stack

The StructureS Universe (+ Linear!)

- Abstract Class -

AbstractStructure

s

AbstractList
AbstractStack AbstractQueue

Quick Note about Terminology

* Note: Stack interface extends Linear interface
* |Interfaces extend other interfaces
e Classes implement interfaces

* |If you look at the structure5 documentation for
Linear, you will see:

e A list of superinterfaces
e A list of subinterfaces

e A list of implementing classes

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html

Linear Interface

* How should LLinear interface differ from List?

* Should have fewer methods than List interface since
we are limiting access ...

e Methods:

* Inherits all of the Structure interface methods
e add(E value) — Add value to the structure.
e E remove(E o) — Remove value o from the structure.
e size(), isEmpty(), clear(), contains(E val), ...
e Adds new methods
e E get () — Preview the next object to be removed.
e E remove () — Remove the next value from the structure.
e boolean empty() —same as isEmpty ()

AbstractStack

* What methods do we need to define?
e Stack interface methods

e Stack introduces new terms: push, pop, peek

e Only use push, pop, peek when talking about
stacks (not queues)

e push = add to top of stack
* pop = remove from top of stack
* peek = look at top of stack (do not remove)

Linear Structure Philosophy

* Why no “random access ! (i.e., no access to
middle of list)

e Supporting/Providing less functionality can yield:

e Simpler implementations of our algorithms
e Greater algorithmic efficiency

* What should be our Data structure
implementation approach!?
e Use existing structures (Vector, LinkedList), or

e Reimplement “stripped down” versions of those
structures (same underlying organization) simplified

Stack Implementations

* Array-based stack
* int top, Object data]]
e Add/remove from index top

e Vector-based stack
e Vector data
e Add/remove from tail

e List-based stack
e SLL data

e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case)

— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space)

Stack Implementations

structure5.StackArray

* int top, Object data]]
e Add/remove from index top

structureb5.StackVector

e Vector data
e Add/remove from tail

structureb.StackList
e SLL data
e Add/remove from head

+ all operations are O(I)
— wasted/run out of space

+/— most ops are O(l) (add
is O(n) in worst case but

amortized O(1))
— potentially wasted space

+ all operations are O(I)
+/— O(n) space overhead
(no “wasted” space)

The StructureS Universe (+ Linear!)

- Abstract Class -

AbstractStructure

s

AbstractList
AbstractStack AbstractQueue

Summary Notes on The Hierarchy

e Linear interface extends Structure
* add(E wval)
° empty()

° get()
* remove()
e size()

e AbstractLinear (partially) implements Linear

e AbstractStack class (partially) extends AbstractLinear

 Essentially introduces “stack-ish” names for linear methods
* push(E val) isadd(E val)
* pop() is remove ()
e peek() isget()

Rounding Out The Hierarchy

e Rundown of classes that extend AbstractStack:

e StackArray<g>

* holds an array of type E
e add/remove at high end
e Can’t add once the array fills

e StackVector<E>
 Similar to StackArray<E>, but with a vector for dynamic growth

e StackList<E>
A singly-linked list with add/remove at head

* For each, we implement add, empty, get, remove, size directly
e push, pop, peek are indirectly implemented by abstract class

The StructureS Universe (+ Stacks!)

- Abstract Class -

AbstractStructure

s

AbstractList
AbstractStack AbstractQueue

= @

CSCI 136
Data Structures &
Advanced Programming

Williams College

Video Goals

* Describe a few real-world problems

* Describe how to map one of those problems
to the stack abstract data type

* Work through some examples to give us
experience with (and appreciated of) stacks

Stack Applications

 The Stack implementation is simple, but
there are many applications, including:

(E\/?ﬂuating mathematical express@

e Searching (Depth-first search)

* Removing recursion for optimization

See textbook for details
because this is VERY useful!

Evaluating Arithmetic Expressions

e Computer programs regularly use stacks to
evaluate arithmetic expressions (as does the HP-
|2C calculator if you want to be a CFA...)

e Example: x*y+z
* First rewrite as xy*z+

* we’ll look at this rewriting process in more detail soon
* Then:

* push x

* pushy

 * (pop twice, multiply popped items, push result)

* push z
* + (pop twice, add popped items, push result)

Converting Expressions

* We (humans) primarily use infix notation to evaluate
expressions

. (xHy)iz

* Computers traditionally used postfix (also called
Reverse Polish) notation
e xy+z*

e Operators appear after operands, parentheses are not
necessary

e How do we convert between the two!

e (Compilers do this for us)

Converting Expressions

 Example: x*y+z*w
e Conversion

|) Add full parentheses to preserve order of
operations

(O<Fy)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw¥)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp

* While there are input “tokens” (i.e., symbols) left:

Read the next token from input.

If the token is a value, push it onto the stack.

Else, the token is an operator that takes n arguments.
(It is known that an operator takes n arguments by its definition.)

e |f there are fewer than n values on the stack — error.

 Else, pop the top n values from the stack and:
— Evaluate the operator, with the values as arguments.
— Push the returned result, if any, back onto the stack.

The top value on the stack is the result of the calculation.
Note that results can be left on stack to be used in future

computations:
e Eg: 32 *4 + followed by 5 / yields 2 on top of stack

Symbolic Example: Converting
then Evaluating

¢ (<) +(ZW) — xy'TWh
e Evaluate xy*zw*+ :
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

Concrete Example: Converting
then Evaluating

¢ (<) +(ZW) — xy'TWh
e Evaluate xy*zw*+ :
e Push x
 Pushy
e Mult: Pop y, Pop x, Push x*y
e Push z
* Pushw
e Mult: Pop w, Pop z, Push z*w
* Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
e Result is now on top of stack

* Try with: w=3, x=4, y=5, z=6

PostScript

PostScript is a programming language used for
generating vector graphics
e Best-known application: describing pages to printers

It is a stack-based language

* Values are put on stack

e Operators pop values from stack, put result back on
* There are numeric, logic, string values

* Many operators

Let’s try it: The ‘gs’ command runs a PostScript
interpreter-....

Implementing a tiny part of gs is something we will
do in lab... it's a lot of fun!

