
CSCI 136
Data Structures &

Advanced Programming

Williams College

Linear Structures

• General idea: we impose access restrictions on
our data structure, disallowing
add/remove/access at arbitrary indices
• No get(int i), set(int i, E value)
• No add(int i), remove(int i)

• Insight: By limiting access, we can actually gain
some utility—linear structures are useful
building blocks with important use cases!

Examples: Dining Hall

• FIFO: First In – First Out (Queue)
• Line at dining hall

• LIFO: Last In – First Out (Stack)
• Pile of plates or cups at dining hall

Examples: Computer Science

• FIFO: First In – First Out (Queue)
• Data packets arriving at a router

• LIFO: Last In – First Out (Stack)
• Java Virtual Machine stack

The Structure5 Universe (+ Linear!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Quick Note about Terminology

• Note: Stack interface extends Linear interface
• Interfaces extend other interfaces
• Classes implement interfaces

• If you look at the structure5 documentation for
Linear, you will see:
• A list of superinterfaces
• A list of subinterfaces
• A list of implementing classes

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Linear.html

Linear Interface

• How should Linear interface differ from List?
• Should have fewer methods than List interface since

we are limiting access …
• Methods:
• Inherits all of the Structure interface methods

• add(E value) – Add value to the structure.
• E remove(E o) – Remove value o from the structure.
• size(), isEmpty(), clear(), contains(E val), …

• Adds new methods
• E get() – Preview the next object to be removed.
• E remove() – Remove the next value from the structure.
• boolean empty() – same as isEmpty()

AbstractStack

• What methods do we need to define?
• Stack interface methods

• Stack introduces new terms: push, pop, peek
• Only use push, pop, peek when talking about

stacks (not queues)
• push = add to top of stack
• pop = remove from top of stack
• peek = look at top of stack (do not remove)

Linear Structure Philosophy

• Why no “random access”? (i.e., no access to
middle of list)
• Supporting/Providing less functionality can yield:

• Simpler implementations of our algorithms
• Greater algorithmic efficiency

• What should be our Data structure
implementation approach?
• Use existing structures (Vector, LinkedList), or

• Reimplement “stripped down” versions of those
structures (same underlying organization) simplified

Stack Implementations

• Array-based stack
• int top, Object data[]
• Add/remove from index top

• Vector-based stack
• Vector data
• Add/remove from tail

• List-based stack
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case)

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space)

Stack Implementations

• structure5.StackArray
• int top, Object data[]
• Add/remove from index top

• structure5.StackVector
• Vector data
• Add/remove from tail

• structure5.StackList
• SLL data
• Add/remove from head

+ all operations are O(1)
– wasted/run out of space

+/– most ops are O(1) (add
is O(n) in worst case but
amortized O(1))

– potentially wasted space

+ all operations are O(1)
+/– O(n) space overhead

(no “wasted” space)

The Structure5 Universe (+ Linear!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Summary Notes on The Hierarchy
• Linear interface extends Structure

• add(E val)
• empty()
• get()
• remove()
• size()

• AbstractLinear (partially) implements Linear
• AbstractStack class (partially) extends AbstractLinear

• Essentially introduces “stack-ish” names for linear methods
• push(E val) is add(E val)
• pop() is remove()
• peek() is get()

Rounding Out The Hierarchy
• Rundown of classes that extend AbstractStack:

• StackArray<E>
• holds an array of type E
• add/remove at high end
• Can’t add once the array fills

• StackVector<E>
• Similar to StackArray<E>, but with a vector for dynamic growth

• StackList<E>
• A singly-linked list with add/remove at head

• For each, we implement add, empty, get, remove, size directly
• push, pop, peek are indirectly implemented by abstract class

The Structure5 Universe (+ Stacks!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

StackArray StackList StackVector

CSCI 136
Data Structures &

Advanced Programming

Williams College

Video Goals

• Describe a few real-world problems
• Describe how to map one of those problems

to the stack abstract data type
• Work through some examples to give us

experience with (and appreciated of) stacks

Stack Applications

• The Stack implementation is simple, but
there are many applications, including:
• Evaluating mathematical expressions
• Searching (Depth-first search)
• Removing recursion for optimization
• …

See textbook for details
because this is VERY useful!

Evaluating Arithmetic Expressions
• Computer programs regularly use stacks to

evaluate arithmetic expressions (as does the HP-

12C calculator if you want to be a CFA…)
• Example: x*y+z
• First rewrite as xy*z+

• we’ll look at this rewriting process in more detail soon

• Then:
• push x
• push y
• * (pop twice, multiply popped items, push result)
• push z
• + (pop twice, add popped items, push result)

Converting Expressions

• We (humans) primarily use infix notation to evaluate
expressions
• (x+y)*z

• Computers traditionally used postfix (also called
Reverse Polish) notation
• xy+z*

• Operators appear after operands, parentheses are not
necessary

• How do we convert between the two?
• (Compilers do this for us)

Converting Expressions

• Example: x*y+z*w
• Conversion

1) Add full parentheses to preserve order of
operations
((x*y)+(z*w))

2) Move all operators (+-*/) after operands
((xy*)(zw*)+)

3) Remove parentheses
xy*zw*+

Use Stack to Evaluate Postfix Exp
• While there are input “tokens” (i.e., symbols) left:

• Read the next token from input.
• If the token is a value, push it onto the stack.
• Else, the token is an operator that takes n arguments.

(It is known that an operator takes n arguments by its definition.)
• If there are fewer than n values on the stack ® error.
• Else, pop the top n values from the stack and:

– Evaluate the operator, with the values as arguments.
– Push the returned result, if any, back onto the stack.

• The top value on the stack is the result of the calculation.
• Note that results can be left on stack to be used in future

computations:
• Eg: 3 2 * 4 + followed by 5 / yields 2 on top of stack

Symbolic Example: Converting
then Evaluating

• (x*y)+(z*w) → xy*zw*+
• Evaluate xy*zw*+ :

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

Concrete Example: Converting
then Evaluating

• (x*y)+(z*w) → xy*zw*+
• Evaluate xy*zw*+ :

• Push x
• Push y
• Mult: Pop y, Pop x, Push x*y
• Push z
• Push w
• Mult: Pop w, Pop z, Push z*w
• Add: Pop x*y, Pop z*w, Push (x*y)+(z*w)
• Result is now on top of stack

• Try with: w=3, x=4, y=5, z=6

PostScript

• PostScript is a programming language used for
generating vector graphics
• Best-known application: describing pages to printers

• It is a stack-based language
• Values are put on stack
• Operators pop values from stack, put result back on
• There are numeric, logic, string values
• Many operators

• Let’s try it: The ‘gs’ command runs a PostScript
interpreter….

• Implementing a tiny part of gs is something we will
do in lab... it‘s a lot of fun!

