
CSCI 136
Data Structures &

Advanced Programming

Williams College

Video Goals

• Describe the queue abstract data type
• Contextualize queues within the Structure5

class hierarchy
• Discuss three queue implementations,

focusing on their tradeoffs

tail head

Queues

• A Queue is a collection of elements, but
access is restricted to the “head” and “tail”

• Many “real-world” examples, including:
• Lines at movie theater, grocery store, etc.
• OS event queue (keeps keystrokes, mouse clicks,

etc., in order)
• Printers
• Routing network traffic

The Structure5 Universe (+ Linear!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

• Stacks are LIFO (Last In First Out)
• Queues are FIFO (First In First Out)

(bottom) (head)(tail)

add

add

remove

remove

Stacks vs. Queues

• Both Stacks and Queues linear data structures
(implement Linear, extend abstract classes that
extend AbstractLinear),

• Like Stacks, Queues have their own terminology,
which can be mapped to Linear interface methods:
• enqueue: insert value at back of queue
• dequeue: remove value from front of queue,

• (peek: access value at front of queue)

Stacks vs. Queues

• Also like Stacks, Queues can be implemented:
• By using existing structures (e.g., Vector,
LinkedList), or

• As “stripped down” versions of those structures
• We can implement a stacks/queues using the same

underlying organization as those structures, but with
reduced/simplified/optimized implementations

The Structure5 Universe (+ Stacks!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

StackArray StackList StackVector

The Structure5 Universe (+ Queues!)
Interface Abstract Class Class

List

Structure

LinearAbstractStructure

AbstractLinearAbstractList

AbstractStackVector SinglyLinkedList DoublyLinkedList AbstractQueue

Stack Queue

QueueArray QueueList QueueVector

Queue Interface

public interface Queue<E> extends Linear<E> {
public void enqueue(E item);
public E dequeue();
public E getFirst(); //value not removed
public E peek(); //same as get()

}

Implementing Queues
As with Stacks, we have three options:
QueueArray

class QueueArray<E> implements Queue<E> {
protected Object[] data; //can’t instantiate E[]
int head;
int count; // can be used to determine tail...

}

QueueVector
class QueueVector<E> implements Queue<E> {

protected Vector<E> data;
}

QueueList
class QueueList<E> implements Queue<E> {

protected List<E> data; //uses a CircularList
}

Tradeoffs:

• QueueArray:
• enqueue is O(1): (rough idea) data[tail] = item;
• dequeue is O(1): (rough idea) data[head] = null; head++;
• Faster operations, but limited size

• QueueVector:
• enqueue is O(1): uses vec.addLast
• dequeue is O(n): uses vec.removeFirst

• QueueList:
• enqueue is O(1): uses lst.addLast
• dequeue is O(1): uses lst.removeFirst

• Note: uses a Circularly Linked List so we have fast head and tail
operations, but we only store one reference per node (next)

QueueArray

• Perhaps the most interesting implementation,
so let’s look at an example…

• How to implement?
• enqueue(item), dequeue(), size()

tailhead

A B

tailhead

A B C

tail head

B C

en
qu

eu
e(

C
)

de
qu

eu
e(

)
head points to front of

queue; tail points to next
empty space (where next

item will be added)

head and tail “wrap
around” array;

when queue is full,
head == tail

After wrap around,
head > tail in some

cases!

public class QueueArray<E> {

protected Object[] data; // Must use object because...
protected int head;
protected int count;

public QueueArray(int size) {
data = new Object[size]; // ... can’t say “new E[size]”

}

public void enqueue(E item) {
assert (count < data.length) : ”The queue is full.";
int tail = (head + count) % data.length;
data[tail] = item;
count++;

}

public E dequeue() {
assert (count > 0) :"The queue is empty.";
E value = (E)data[head];
data[head] = null;
head = (head + 1) % data.length;
count--;
return value;

}

public boolean empty() {
return count>0;

}

QueueArray-style QueueVector?

• Why not use this same design with a Vector as
our building block? Several decisions to make:
• How do we interpret the respective meanings of
vec.elementCount, q.head, and q.count?

• How do we “grow” our Vector when our
start/end are not at index 0 and vec.size()-1?

• These are all things that we can overcome, but
we can’t simply use a Vector as a “black box”
• Note: structure5 takes the “black box” approach;

intentionally demonstrates tradeoff of specialization

Takeaways

• Queues, like stacks, limit our access to
specific locations of our data structure
• However, this mimics common access patterns

• We can design a data structure that takes
advantage of these limitations to optimize perf

• By utilizing these data structures, we can
simplify/influence our algorithm design

• Enqueue/dequeue and push/pop are common
terms, so be comfortable using them

