CSCI 136 Data Structures & Advanced Programming

Priority Queues Introduction & Implementations

Priority Queues

- Priority Queues
 - Supports Add & Remove (Min) operations
- Heaps
 - A "somewhat-ordered" data structure
 - Conceptual structure
 - Efficient implementations
 - Array Representations of (Binary) Trees

A New Data Structure

Goal: Design a structure S to hold items with *priorities*

- S should support operations
 - add(E item); // add an item
 - E remove(); // remove highest priority item
- S should be designed to make these two operations fast

Such structures are called Priority Queues

Priority Queues

- Priority queues are used for:
 - Scheduling processes in an operating system
 - Priority is function of time waiting + process priority
 - Order services on server
 - Backup is low priority, so don't do when high priority tasks need to happen
 - Scheduling future events in a simulation
 - Medical waiting room
 - Huffman codes order by tree size/weight
 - A variety of graph/network algorithms
 - To roughly order choices that are generated out of order

Priority Queues

- Name is misleading: They are not queues
- Always remove object with highest priority regardless of when it was enqueued
- Data can be received/inserted in any order, but it is always returned/removed according to priority
- Like ordered structures (i.e., OrderedVectors and OrderedLists), PQs require comparisons of values

On Terminology

- In colloquial English, the phrases "highest priority" and "number I priority" are used interchangably
- So keep in mind that, often
 Higher Priority = Smaller Value
- A PQ removes the *smallest* value in an ordering: that is, the *highest priority* value!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
 public E getFirst(); // peeks at minimum element
 public E remove(); // removes minimum element
 public void add(E value); // adds an element
 public boolean isEmpty();
 public int size();
 public void clear();
}

Notes on PQ Interface

- Unlike previous structures, we do not extend any other interfaces for many reasons
 - Random access is prohibited
 - Removal of arbitrary values is prohibited
- PriorityQueue uses Comparables
 - methods consume Comparable parameters and
 - methods return Comparable values
- Could be made to use Comparators instead...

Implementing PQs

- OrderedVector?
 - Keep ordered vector of objects
 - O(n) to add/remove from vector
 - Details in book…
 - Can we do better than O(n)?
- Binary Search Tree
 - Would need to be balanced for good performance
- Could relaxing requirements of total ording help
 - Overhead of balancing might be avoided
- Heap!
 - Partially ordered binary tree

Heap (aka Min-Heap)

- A heap is a special type of binary tree
- A heap is a binary tree where:
 - Root holds smallest (highest priority) value
 - Subtrees are also heaps (this is crucial!)
- So values increase in priority (decrease in value) from leaves to root (from descendant to ancestor)
- Alternate definition: A tree is a heap if and only if
 - For all nodes: node.value() >= node.parent.value()
 - This is called the heap property or the heap invariant
- Several valid heaps for same data set (no unique representation)
 - Note: variants allow more than 2 children per node

- Add new value as a leaf
- "Percolate" it up the tree
 - while (value < parent's value) swap with parent
- This operation preserves the heap property since new value was the only one violating heap property
- Efficiency depends upon speed of
 - Finding a node at which to add new child
 - Finding location of parent
 - Tree height

Removing Root From a PQ

- Copy root value, save it to return
- Find a leaf, delete it, put its data in the root
- "Push" data down through the tree
 - while (data.value > value of (at least) one child)
 - Swap data with data of smaller child
- This operation preserves the heap property
- Efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Height of tree

Key Operations/Properties

- Insert efficiency depends upon speed of
 - Finding a node at which to add new child
 - Finding location of parent
 - Tree height
- RemoveMin efficiency depends upon speed of
 - Finding a leaf
 - Finding locations of children
 - Tree Height
- Goal: Find tree structure to optimize these

0	Ι	2	3	4	5	6	7	8	9	10	
2	3	5		17	7	30	21	35	24	19	22

Array-Based Binary Trees

- Encode structure of tree in array indexes
 - Put root at index 0
- Where are children of node i?
 - Children of node i are at 2i+1 and 2i+2
 - Look at example
- Where is parent of node j?
 - Parent of node j is at (j-1)/2

Recall : ArrayTrees

- Why are ArrayTrees good?
 - Save space for links
 - No need for additional memory allocated/garbage collected
 - Works well for full or complete trees
 - Complete: All levels except last are full and all gaps are at right
 - "A complete binary tree of height h is a full binary tree with 0 or more of the rightmost leaves of level h removed"
- Insight: We can guarantee that our heap is always a complete tree by smart add/remove choices

Implementing Heaps

- VectorHeap
 - Use conceptual array representation of BT (ArrayTree)
 - But use extensible Vector instead of array (makes adding elements easier)
 - Note:
 - Root of tree is location 0 of Vector
 - Children of node in location i are in locations 2i+1 (left) and 2i+2 (right)
 - Parent of node i is in location (i-1)/2

Implementing Heaps

• Features

- Guarantee no gaps in array (array is complete)
 - Always add in next available array slot (left-most available spot in binary tree;
 - Always remove using "right-most" leaf
- Heap Invariant becomes
 - data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)
- When elements are added and removed, do small amount of work to "re-heapify"
 - How small? Note: finding a node's child or parent takes constant time, as does finding "final" leaf or next slot for adding
 - Since this heap corresponds to a full binary tree, the depth of the tree is O(log n), so add/remove take O(log n) time!

Implementing Heaps

- Details
- Add method uses helper percolateUp(int location
 - percolateUp moves newly inserted value up the tree until heap property is restored
- Remove method uses helper pushDownRoot(int root)
 - Moves value that remove moved from deleted leaf to root down the tree until heap property is restored
- Let's look at the code....

0	Ι	2	3	4	5	6	7	8	9	10	П	12	13	14
2	3	5		17	7	30	21	35	24	19	22	-	-	I

0	I	2	3	4	5	6	7	8	9	10	П	12	13	14
2	3	5		17	7	30	21	35	24	19	22	4	I	I

0	Ι	2	3	4	5	6	7	8	9	10		12	13	14
2	3	5		17	4	30	21	35	24	19	22	7	I	-

0	I	2	3	4	5	6	7	8	9	10	П	12	13	14
2	3	4		17	5	30	21	35	24	19	22	7	-	I

Add : Uses PercolateUp

```
protected void percolateUp(int leaf) {
    int parent = parent(leaf);
    E value = data.get(leaf);
    while (leaf > 0 &&
        (value.compareTo(data.get(parent)) < 0)){</pre>
```

```
data.set(leaf,data.get(parent));
  leaf = parent;
  parent = parent(leaf);
}
data.set(leaf,value);
```

}

Example : Remove()

0	Ι	2	3	4	5	6	7	8	9	10	11	12	13	14
2	3	4		17	5	30	21	35	24	19	22	7	I	I

0	Ι	2	3	4	5	6	7	8	9	10	П	12	13	14
7	3	4		17	5	30	21	35	24	19	22	-	-	I

Example : Remove()

0	I	2	3	4	5	6	7	8	9	10		12	13	14
3	7	4		17	5	30	21	35	24	19	22	-	I	I

Remove : Uses PushDownRoot

```
protected void pushDownRoot(int root) {
 int heapSize = data.size();
 E value = data.get(root);
 while (root < heapSize) {</pre>
   int childpos = left(root);
   // If node has left child
   if (childpos < heapSize) {</pre>
     // If right child has smaller value
     if ((right(root) < heapSize) &&
           ((data.get(childpos+1)).compareTo
             (data.get(childpos)) < 0)) {</pre>
      childpos++;
     }
```

Remove : Uses PushDownRoot

```
// Assert: childpos indexes smaller child
// Compare child to value being pushed down
if((data.get(childpos)).compareTo(value)<0){
   data.set(root,data.get(childpos));
   root = childpos; // keep moving down
} else { // found right location
   data.set(root,value);</pre>
```

```
return;
```

```
}
```

```
} else { // at a leaf! insert and halt
   data.set(root,value);
   return;
} }
```

VectorHeap Summary

- Add/Remove are both O(log n)
- Data is not completely sorted
 - "Partial" order is maintained
- Note: VectorHeap(Vector<E> v)
 - Takes an unordered Vector and uses it to construct a heap
 - How
 - Uses VectorHeap add method to insert elements of v
 - This builds the VectorHeap in O(n log n) time
 - As always, we ask: Can we do better?
- A cliff-hanger-stay tuned!