
CSCI 136
Data Structures &

Advanced Programming

Priority Queues
Introduction & Implementations

Priority Queues

• Priority Queues
• Supports Add & Remove (Min) operations

• Heaps
• A “somewhat-ordered” data structure

• Conceptual structure
• Efficient implementations

– Array Representations of (Binary) Trees

2

A New Data Structure

Goal: Design a structure S to hold items with
priorities

• S should support operations
• add(E item); // add an item

• E remove(); // remove highest priority item

• S should be designed to make these two
operations fast

Such structures are called Priority Queues

Priority Queues

• Priority queues are used for:
• Scheduling processes in an operating system

• Priority is function of time waiting + process priority

• Order services on server
• Backup is low priority, so don’t do when high priority tasks need

to happen

• Scheduling future events in a simulation

• Medical waiting room
• Huffman codes - order by tree size/weight

• A variety of graph/network algorithms
• To roughly order choices that are generated out of order

Priority Queues

• Name is misleading: They are not queues
• Always remove object with highest priority

regardless of when it was enqueued
• Data can be received/inserted in any order,

but it is always returned/removed according
to priority

• Like ordered structures (i.e., OrderedVectors
and OrderedLists), PQs require comparisons
of values

On Terminology

• In colloquial English, the phrases "highest
priority" and "number 1 priority" are used
interchangably

• So keep in mind that, often
Higher Priority = Smaller Value

• A PQ removes the smallest value in an
ordering: that is, the highest priority value!

PQ Interface

public interface PriorityQueue<E extends Comparable<E>> {
public E getFirst(); // peeks at minimum element
public E remove(); // removes minimum element
public void add(E value); // adds an element
public boolean isEmpty();
public int size();
public void clear();

}

Notes on PQ Interface

• Unlike previous structures, we do not extend
any other interfaces for many reasons
• Random access is prohibited

• Removal of arbitrary values is prohibited

• PriorityQueue uses Comparables
• methods consume Comparable parameters and
• methods return Comparable values

• Could be made to use Comparators instead…

Implementing PQs

• OrderedVector?
• Keep ordered vector of objects
• O(n) to add/remove from vector
• Details in book…
• Can we do better than O(n)?

• Binary Search Tree
• Would need to be balanced for good performance

• Could relaxing requirements of total ording help
• Overhead of balancing might be avoided

• Heap!
• Partially ordered binary tree

Heap (aka Min-Heap)
• A heap is a special type of binary tree
• A heap is a binary tree where:

• Root holds smallest (highest priority) value
• Subtrees are also heaps (this is crucial!)

• So values increase in priority (decrease in value)
from leaves to root (from descendant to ancestor)

• Alternate definition: A tree is a heap if and only if
• For all nodes: node.value() >= node.parent.value()

• This is called the heap property or the heap invariant

• Several valid heaps for same data set (no unique
representation)
• Note: variants allow more than 2 children per node

Inserting into a PQ

Inserting into a PQ

Inserting into a PQ

Inserting into a PQ

Inserting into a PQ

• Add new value as a leaf
• “Percolate” it up the tree
• while (value < parent’s value) swap with parent

• This operation preserves the heap property
since new value was the only one violating
heap property

• Efficiency depends upon speed of
• Finding a node at which to add new child

• Finding location of parent
• Tree height

Removing Min From a PQ

Removing Min From a PQ

Removing Min From a PQ

Removing Min From a PQ

Removing Min From a PQ

Removing Min From a PQ

Removing Root From a PQ

• Copy root value, save it to return
• Find a leaf, delete it, put its data in the root
• “Push” data down through the tree
• while (data.value > value of (at least) one child)

• Swap data with data of smaller child

• This operation preserves the heap property
• Efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Height of tree

Key Operations/Properties

• Insert efficiency depends upon speed of
• Finding a node at which to add new child
• Finding location of parent

• Tree height

• RemoveMin efficiency depends upon speed of
• Finding a leaf
• Finding locations of children

• Tree Height

• Goal: Find tree structure to optimize these

Array-Based Binary Trees

0 1 2 3 4 5 6 7 8 9 10 11

2 3 5 11 17 7 30 21 35 24 19 22

Array-Based Binary Trees

• Encode structure of tree in array indexes
• Put root at index 0

• Where are children of node i?
• Children of node i are at 2i+1 and 2i+2

• Look at example

• Where is parent of node j?
• Parent of node j is at (j-1)/2

Recall : ArrayTrees

• Why are ArrayTrees good?
• Save space for links
• No need for additional memory allocated/garbage

collected
• Works well for full or complete trees

• Complete: All levels except last are full and all gaps are at right
• “A complete binary tree of height h is a full binary tree with 0 or

more of the rightmost leaves of level h removed”

• Insight: We can guarantee that our heap is always a
complete tree by smart add/remove choices

Implementing Heaps

• VectorHeap
• Use conceptual array representation of BT

(ArrayTree)
• But use extensible Vector instead of array (makes

adding elements easier)
• Note:

• Root of tree is location 0 of Vector
• Children of node in location i are in locations 2i+1

(left) and 2i+2 (right)
• Parent of node i is in location (i-1)/2

Implementing Heaps

• Features
• Guarantee no gaps in array (array is complete)

• Always add in next available array slot (left-most available spot in
binary tree;

• Always remove using “right-most” leaf

• Heap Invariant becomes
• data[i] <= data[2i+1]; data[i]<=data[2i+2] (or kids might be null)

• When elements are added and removed, do small amount
of work to “re-heapify”
• How small? Note: finding a node’s child or parent takes constant

time, as does finding “final” leaf or next slot for adding
• Since this heap corresponds to a full binary tree, the depth of the

tree is O(log n), so add/remove take O(log n) time!

Implementing Heaps

Details
• Add method uses helper percolateUp(int location

• percolateUp moves newly inserted value up the tree until
heap property is restored

• Remove method uses helper pushDownRoot(int root)
• Moves value that remove moved from deleted leaf to root

down the tree until heap property is restored

• Let's look at the code….

Example : Add(4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 5 11 17 7 30 21 35 24 19 22 - - -

Example : Add(4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 5 11 17 7 30 21 35 24 19 22 4 - -

Example : Add(4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 5 11 17 4 30 21 35 24 19 22 7 - -

Example : Add(4)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 4 11 17 5 30 21 35 24 19 22 7 - -

Add : Uses PercolateUp
protected void percolateUp(int leaf) {
int parent = parent(leaf);
E value = data.get(leaf);
while (leaf > 0 &&

(value.compareTo(data.get(parent)) < 0)){

data.set(leaf,data.get(parent));
leaf = parent;
parent = parent(leaf);

}
data.set(leaf,value);

}

Example : Remove()

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

2 3 4 11 17 5 30 21 35 24 19 22 7 - -

Example : Remove()

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

7 3 4 11 17 5 30 21 35 24 19 22 - - -

Example : Remove()

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

3 7 4 11 17 5 30 21 35 24 19 22 - - -

Remove : Uses PushDownRoot
protected void pushDownRoot(int root) {
int heapSize = data.size();
E value = data.get(root);
while (root < heapSize) {
int childpos = left(root);
// If node has left child
if (childpos < heapSize) {
// If right child has smaller value
if ((right(root) < heapSize) &&

((data.get(childpos+1)).compareTo
(data.get(childpos)) < 0)) {

childpos++;
}

Remove : Uses PushDownRoot
// Assert: childpos indexes smaller child
// Compare child to value being pushed down
if((data.get(childpos)).compareTo(value)<0){
data.set(root,data.get(childpos));
root = childpos; // keep moving down

} else { // found right location
data.set(root,value);
return;

}
} else { // at a leaf! insert and halt

data.set(root,value);
return;

} } }

VectorHeap Summary
• Add/Remove are both O(log n)
• Data is not completely sorted
• “Partial” order is maintained

• Note: VectorHeap(Vector<E> v)
• Takes an unordered Vector and uses it to

construct a heap
• How

• Uses VectorHeap add method to insert elements of v
• This builds the VectorHeap in O(n log n) time

• As always, we ask: Can we do better?

• A cliff-hanger–stay tuned!

