CSCI 136 Data Structures \& Advanced Programming

Mathematical Induction
Fall 2020
Instructors : Bill \rightarrow Bill + I

Mathematical Induction

For best results: Review the materials discussing recursion!

Recursive Contains

Recall our recursive contains method for a Singly-Linked List

```
// Pre: value is not null
public static boolean contains(Node<String> n, String v) {
    if( n == null ) return false;
    return v.equals(n.value()) || contains(n.next(), v);
}
```

How could we convince ourselves it's correct?

- Does it work on an empty list? [n is null]
- Does it work on a list of size I? [n.next() is null]
- Does it work on a list of size 2 ? [n.next() is a list of size I] Key Observation:
- Assuming that contains works on all lists of size n, (for any $n \geq 0$)
- Allows us to conclude that it works for all lists of size $n+1$!
- And since contains works on all lists of size 0 ...It always works!

Mathematical Induction

- The mathematical sibling of recursion is induction Induction is a proof technique
Reflects the structure of the natural numbers
Used to simultaneously prove an infinite number of theorems! For example:
- Contains functions correctly for all lists of size o
- Contains functions correctly for all lists of size I
- Contains functions correctly for all lists of size 2

Mathematical Induction

Let's make this notion formal and precise
Given: Boolean statements $P_{0}, P_{1}, \ldots, P_{n}, \ldots$. That is

- Each statement P_{i} is either true or false (boolean)
- There is a statement P_{n} for each integer $n \geq 0$

We would like to prove that each statement is true.
We do this by

- Directly showing that P_{0} is true
- Then showing that whenever P_{n} is true for some $n \geq 0$, then P_{n+1} is also true
We can then conclude that all of the statements are true!

Mathematical Induction

Principle of Mathematical Induction (Weak)

Let $P_{0}, P_{1}, P_{2}, \ldots$ Be a sequence of statements, each of which could be either true or false. Suppose that
I. P_{0} is true, and
2. For every $n \geq 0$, if P_{n} is true, then P_{n+1} is true

Then all of the statements are true!
Notes

- Often Property 2 is stated as

2. For every $n>0$, if P_{n-1} is true, then P_{n} is true

- We call Step I Verifying the base case(s) and Step 2 verifying the induction step (or the induction hypothesis)

Mathematical Induction

- Example: Prove that for every $\mathrm{n} \geq 0$

$$
P_{n}: 0+1+\ldots+n=\frac{n(n+1)}{2}
$$

- Proof by induction:
- Base case: P_{n} is true for $n=0$ (just check it!)
- Induction step: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.
$P_{n+1}: 0+1+\ldots+n+(n+1)=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}$
Is P_{n+1} true?
Check. $0+1+\ldots+n+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}$
- First equality holds by assumed truth of P_{n} !

An Aside: Summation Notation

A sum of the form $a_{0}+a_{1}+\cdots a_{n}$ is frequently shortened to

$$
\sum_{m_{a}}^{n}
$$

Using this notation, the induction step of our previous proof would look like

- Induction step: If P_{n} is true for some $n \geq 0$, then P_{n+1} is true.

$$
P_{n+1}: \sum_{i=0}^{n+1} i=\frac{(n+1)((n+1)+1)}{2}=\frac{(n+1)(n+2)}{2}
$$

Is P_{n+1} true?
Check:

$$
\sum_{i=0}^{\substack{\text { neck: } \\ n+1}} i=\left(\sum_{i=0}^{n} i\right)+(n+1)=\frac{n(n+1)}{2}+(n+1)=\frac{(n+1)(n+2)}{2}
$$

The second equality holds by assumed truth of P_{n} !

Prove: $2^{0}+2^{1}+\cdots+2^{n}=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$

Proof: Using summation notation

- Base case: $n=0$
- LHS: $\sum_{i=0}^{0} 2^{i}=2^{0}=1$
-RHS: $2^{0+1}-1=2-1=1$
- Induction Step: Show that, for $n \geq 0$, whenever

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

- Then

$$
\sum_{i=0}^{n+1} 2^{i}=2^{(n+1)+1}-1
$$

Continued: Prove $2^{0}+2^{1}+\cdots+2^{n}=\sum_{i=0}^{n} 2^{i}=2^{n+1}-1$ Induction Step: Show that, for $n \geq 0$, whenever

$$
\sum_{i=0}^{n} 2^{i}=2^{n+1}-1
$$

Then

$$
\sum_{i=0}^{n+1} 2^{i}=2^{(n+1)+1}-1=2^{n+2}-1
$$

Well,

$$
\sum_{i=0}^{n+1} 2^{i}=\left(\sum_{i=0}^{n} 2^{i}\right)+2^{n+1}=\left(2^{n+1}-1\right)+2^{n+1}=2^{n+2}-1
$$

Mathematical Induction

Prove: $1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}$

Note:This starts at $\mathrm{n}=\mathrm{I}$, not $\mathrm{n}=0$. Is this a problem?

- No.We just
- Make our base case $\mathrm{n}=\mathrm{I}$, and
- Show that whenever the property holds for some $n \geq 1$ then it holds for $\mathrm{n}+1$
Base Case: $\mathrm{n}=1$
LHS: $1^{3}=1$ and RHS: $1^{2}=1$
Induction step: Assume that for some $\mathrm{n} \geq 1$

$$
1^{3}+2^{3}+\cdots+n^{3}=(1+2+\cdots+n)^{2}
$$

Now show that

$$
1^{3}+2^{3}+\cdots+(n+1)^{3}=(1+2+\cdots+(n+1))^{2}
$$

IS: $1^{3}+2^{3}+\cdots+(n+1)^{3}=(1+2+\cdots+(n+1))^{2}$

$$
\begin{aligned}
1^{3}+2^{3}+\cdots+(n+1)^{3} & =\left(1^{3}+2^{3}+\cdots+n^{3}\right)+(n+1)^{3} \\
\text { Induction } & \left.=(1+2+\cdots+n)^{2}\right)+(n+1)^{3} \\
& =\left(\frac{n(n+1)}{2}\right)^{2}+(n+1)^{3} \\
& =(n+1)^{2}\left(\left(\frac{n}{2}\right)^{2}+(n+1)\right) \\
& =(n+1)^{2}\left(\frac{n^{2}+4 n+4}{4}\right) \\
& =\frac{(n+1)^{2}(n+2)^{2}}{4} \\
& =\left(\frac{(n+1)(n+2)}{2}\right)^{2} \\
& =(1+2+\cdots+(n+1))^{2}
\end{aligned}
$$

What about Recursion?

- What does induction have to do with recursion?
- Same form!
- Base case
- Inductive case that uses simpler form of problem

Example : Factorial

```
public static int fact(int n) {
    if (n==0) return 1;
    else return n*fact(n-1);
}
```

- Example: factorial
- Prove that fact(n) requires n multiplications
- Base case: $\mathrm{n}=0$ returns I , using 0 multiplications
- Assume true for some $n \geq 0$, so fact(n) requires n multiplications.
- fact $(n+1)$ performs one multiplication $(n+1) * f a c t(n)$. But, by induction, fact(n) requires n multiplications. Therefore fact(n) requires $I+n$ multiplications.

Recursive Contains

Recall again our recursive contains method for a Singly-Linked List

```
// Pre: value is not null
public static boolean contains(Node<String> anode, String v) {
    if( aNode == null ) return false;
    return v.equals(aNode.value()) || contains(aNode.next(), v);
}
```

Claim: contains works correctly for any list of size $\mathrm{n} \geq 0$

- Base Case: $\mathrm{n}=0$ [aNode is null]
- The if statement immediately returns false-the correct answer
- Induction step
- Suppose contains works correctly on all lists of size n, for some $n \geq 0$.
- Show that it works correctly on all lists of size $\mathrm{n}+1$
- Proof: If $n \geq 0$, then $n+I \geq I$, so the first call to contains will execute the final line of the method.
- If v.equals (aNode.value() is true, then correct result is returned
- Otherwise, contains is called on a list of size n , which by assumption returns the correct result (our induction hypothesis)

Counting Method Calls

- Example: Fibonacci
- Prove that fib(n) makes at least fib(n) calls to fib()
- Base cases: $\mathrm{n}=0$: I call; $\mathrm{n}=\mathrm{I}$; I call
- Assume that for some $n \geq 2$, fib($\mathrm{n}-\mathrm{I}$) makes at least fib($\mathrm{n}-\mathrm{I}$) calls to fib() and fib(n-2) makes at least fib($n-2$) calls to fib().
- Claim: Then fib(n) makes at least fib(n) calls to fib()
- I initial call: fib(n)
- By induction: At least fib(n-I) calls for fib(n-I)
- And as least fib(n-2) calls for fib(n-2)
- Total: $I+$ fib(n-I) + fib($n-2)>$ fib $(n-I)+$ fib $(n-2)=$ fib(n) calls
- Note: Need two base cases!
- Aside: Can show by induction that for $\mathrm{n}>10$: fib(n) $>(\mathrm{I} .5)^{\mathrm{n}}$
- Thus the number of calls grows exponentially!
- Verifying our empirical observation that computing fib(45) was slow!

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)
Let $P_{0}, P_{1}, P_{2}, \ldots$ be a sequence of statements, each of which could be either true or false. Suppose that
I. P_{0} and P_{1} are true, and
2. For all $n \geq 2$, if P_{n-1} and P_{n-2} are true, then so is P_{n}.

Then all of the statements are true!
Other versions:

- Can have $\mathrm{k}>2$ base cases
- Doesn't need to start at 0

Example: Binary Search

- Given an array $a[]$ of positive integers in increasing order, and an integer x, find location of x in $a[]$.
- Take "indexOf" approach: return -I if x is not in a[]

```
protected static int recBinSrch(int a[], int value,
    int low, int high) {
    if (low > high) return -1;
    else {
    int mid = (low + high) / 2; //mid index
    if (a[mid] == value) return mid;
    else if (a[mid] < value) //look high!
        return recBinSarch(a, value, mid + 1, high);
    else
                            //look low!
        return recBinSarch(a, value, low, mid - 1);
    }
}
```


Binary Search takes O(log n) Time

Can we use induction to prove this?

- Induction on size of slice : $\mathrm{n}=$ high - low + I
- Claim: If $n>0$, then recBinSrch performs at most $\mathrm{c}(\mathrm{I}+\log \mathrm{n})$ operations
- where c is twice the number of statements in recBinSrch
- All logs are base 2 unless specified differently
- Recall $: \log I=0$
- Base case: $\mathrm{n}=\mathrm{I}$: Then low = high so only c statements execute (method runs twice) and $\mathrm{c} \leq \mathrm{c}(\mathrm{I}+\log \mathrm{I})$
- Assume that claim holds for some $\mathrm{n} \geq I$, does it hold for $\mathrm{n}+\mathrm{I}$? [Note: $\mathrm{n}+\mathrm{I}$ > I, so low < high]
- Problem: Recursive call is not on n : it's on $\mathrm{n} / 2$.
- Solution: We need a better version of the PMI....

Mathematical Induction

Principle of Mathematical Induction (Strong)

Let $P_{0}, P_{1}, P_{2}, \ldots$ be a sequence of statements, each of which could be either true or false. Suppose that, for some $\mathrm{k} \geq 0$
I. $P_{0}, P_{1}, \ldots, P_{k}$ are true, and
2. For every $n \geq k$, if $P_{0}, P_{1}, \ldots, P_{n}$ are true, then P_{n+1} is true Then all of the statements are true!

Binary Search takes $O(\log n)$ Time

Try again now:

- Assume that for some $\mathrm{n} \geq I$, the claim holds for all $\mathrm{i} \leq \mathrm{n}$, does claim hold for $\mathrm{n}+\mathrm{l}$?
- Yes! Either
- $x=a[m i d]$, so a constant number of operations are performed, or
- RecBinSearch is called on a sub-array of size $n / 2$, and by induction, at most $\mathrm{c}(\mathrm{I}+\log (\mathrm{n} / 2))$ operations are performed.
- This gives a total of at most $c+c(1+\log (n / 2))$ operations
- We want to show that this is at most $c(I+\log (n)) \ldots$.

Binary Search takes $O(\log n)$ Time

This gives a total of at most $c+c\left(1+\log _{2} \frac{n}{2}\right)$ operations

- $\quad c$ statements in original call to recBinSrch, and
- $c\left(1+\log _{2} \frac{n}{2}\right)$ statements in recursive calls

So

$$
\begin{aligned}
c+c\left(1+\log _{2} \frac{n}{2}\right) & =c+c\left(\log _{2} 2+\log _{2} \frac{n}{2}\right) \\
& =c+c\left(\log _{2} 2 \cdot \frac{n}{2}\right) \\
& =c+c \log _{2} n \\
& =c\left(1+\log _{2} n\right)
\end{aligned}
$$

which is what we wanted to show

In Summary

- Two versions of the principle of mathematical induction
- Strong: Given the truth of a fixed number of base cases P_{1}, \ldots, P_{k}, if we can show that for every $n \geq k$:
- If P_{1}, \ldots, P_{n} are true, then P_{n+1} is true

Then all of the statements are true

- Weak: Given the truth of a fixed number of base cases $\mathrm{P}_{1}, \ldots, \mathrm{P}_{\mathrm{k}}$, if we can show that for every $n>k$:
- If the k statements $P_{n-k}, P_{n-(k-1)}, \ldots, P_{n-1}$ are true, then P_{n} is true

Then all of the statements are true

- That is, if for every $n>k$ we can show that whenever the k statements immediately preceding statement P_{n} are true, then P_{n} is true
- Strong induction is needed when a problem is being decomposed into subproblems much smaller size

