CSCI 136
Data Structures &
Advanced Programming

Mathematical Induction

Fall 2020
Instructors : Bill 2 Bill + |

Mathematical Induction

For best results: Review the materials discussing recursion!

Recursive Contains

Recall our recursive contains method for a Singly-Linked List

// Pre: value is not null

public static boolean contains(Node<String> n, String v) {
if(n == null) return false;
return v.equals(n.value()) || contains(n.next(), v);

How could we convince ourselves it's correct!?

e Does it work on an empty list! [n is null]

e Does it work on a list of size |? [n.next() is null]

e Does it work on a list of size 2? [n.next() is a list of size |]

Key Observation:

e Assuming that contains works on all lists of size n, (for any n > 0)
e Allows us to conclude that it works for all lists of size n+1 !

e And since contains works on all lists of size 0...lt always works!

Mathematical Induction

The mathematical sibling of recursion is induction

Induction is a proof technique
Reflects the structure of the natural numbers

Used to simultaneously prove an infinite number of
theorems! For example:
Contains functions correctly for all lists of size o
Contains functions correctly for all lists of size |

Contains functions correctly for all lists of size 2

Mathematical Induction

Let's make this notion formal and precise

Given: Boolean statements Py, P, ..., P, Thatis
e Each statement P, is either true or false (boolean)
* There is a statement P, for each integer n > 0
We would like to prove that each statement is true.
We do this by

* Directly showing that P is true

* Then showing that whenever P, is true for some n > 0,
then P_,, is also true

We can then conclude that all of the statements are true!

Mathematical Induction

Principle of Mathematical Induction (Weak)

Let Py, P,, P,, ... Be a sequence of statements, each of
which could be either true or false. Suppose that
|. Py is true, and

2. Foreveryn20,if P, is true, then P, is true

Then all of the statements are true!

Notes
e Often Property 2 is stated as

2. Foreveryn>0,if P, is true, then P, is true

 We call Step | Verifying the base case(s) and Step 2
verifying the induction step (or the induction hypothesis)

Mathematical Induction

* Example: Prove that for every n > 0

n(n+1)
2

P,:0+1+ ...+ n=

* Proof by induction:

* Base case: P, is true for n = 0 (just check it!)

* Induction step: If P, is true for some n=0, then

P .| is true.
(n + 1)((n +1) + 1) m+1)(n +2)

Pi1:0+1+ . +n+(n+1)= 5

Is P, 14 true?

Check n+1) = + (n+1) = (n+1)(n+2)

 First equality holds by assumed truth of P!

An Aside: Summation Notation

A sum of the formay +a; + - a, Zn:a-

is frequently shortened to -

Using this notation, the induction step of our previous
proof would look like

* Induction step: If P, is true for some n=0, then P, ., is true.

n+1

. @+ D((+D+1) (n+ D1 +2)
P"“'Zl_ 2 - 2

=0
Is P4 true?

Check:

n+1
’(nH) +(+1)_(n+1)(n+2)

The second equality holds by assumed truth of P,!

n
Prove: 204214 ..427 = 2 ot = on+l _ 4
(=0

Proof: Using summation notation
* Basecase:n =0
e LHS: }? 2t =2%=1
e RHS: 2%l —1=2-1=1
* |Induction Step: Show that, for n = 0, whenever

n
2 Zi — 2n+1 —1
=0

n+1

2 20— 2(n+1)+1 —1
=0

e Then

Continued: Prove 20 +21 4...42n = 2 2t = pn+l _4q

Induction Step: Show that, for n = 0, whenever

n
z 2i — 2n+1 —1
=0

Then

n+1

z 2l _ 2(n+1)+1 1 =2n+2 _ 1

n+1
z 2i + 2n+1 2n+1 — 2n+2 1 V
=0

WVell,

Mathematical Induction

Prove: 1° + 23 + -+ n® =1+ 2+ -+ n)?

Note: This starts at n=1I, not n=0. Is this a problem?
* No.We just

* Make our base case n=1, and
* Show that whenever the property holds for some n>|

then it holds for n+|
Base Case:n = |
LHS:13 = 1and RHS: 12 =1
Induction step: Assume that for some n > |
P+22+4+n>=04+24++n)?
Now show that
1B3+25+-4+m+1D3=0Q+2+-+1n+1))>*

ST +2°+ 4+ (n+1)°=0Q+2+ -+ (n+1))°

1°+2°+ -+ (n+1)° =+(n+1)3
. =_ =
Induction=" w + (n+1)3

2
_ <”(”2+ 1)) + (n+1)3

= (n+ 1)? ((g)z +(n+ 1))

n® +4n+ 4
4

=(n+1)2<

_ (n+1)*(n+2)?
B 4

_ ((n + 1)2(n + 2))2

=(1+2++0+1)% 2

What about Recursion?

* What does induction have to do with recursion?

e Same form!
e Base case

* Inductive case that uses simpler form of problem

Example : Factorial

public static int fact(int n) {
if (n==0) return 1;
else return n*fact(n-1);

}
* Example: factorial

* Prove that fact(n) requires n multiplications
e Base case: n =0 returns |, using 0 multiplications\/
e Assume true for some n>0, so fact(n) requires n multiplications.
o fact(n+1) performs one multiplication (n+1)*fact(n). But, by

induction, fact(n) requires n m\uﬁplications. Therefore fact(n)
requires |+n multiplications.

Recursive Contains

Recall again our recursive contains method for a Singly-Linked List

// Pre: value is not null

public static boolean contains(Node<String> anode, String v) {
if(aNode == null) return false;
return v.equals(aNode.value()) || contains(aNode.next(), v);

}
Claim: contains works correctly for any list of size n > 0

e Base Case: n=0 [aNode is null]
e The if statement immediately returns false—the correct answer \/

* Induction step
e Suppose contains works correctly on all lists of size n, for some n > 0.

e Show that it works correctly on all lists of size n+1
e Proof: If n >0, then n+| > |, so the first call to contains will
execute the final line of the method.
e If v.equals(aNode.value() is true, then correct result is returned

e Otherwise, contains is called on a list of size n, which by assumption
returns the correct result (our induction hypothesis)

Counting Method Calls

* Example: Fibonacci

* Prove that fib(n) makes at least fib(n) calls to fib()

e Basecases:n=0:lcal;n=1; | call \/

e Assume that for some n 2 2, fib(n-1) makes at least fib(n-1) calls to
fib() and fib(n-2) makes at least fib(n-2) calls to fib().

e Claim: Then fib(n) makes at least fib(n) calls to fib()
— | initial call: fib(n)
— By induction: At least fib(n-1) calls for fib(n-1)

— And as least fib(n-2) calls for fib(n-2)
— Total: | + fib(n-1) + fib(n-2) > fib(n-1) + fib(n-2) = fib(n) calls \/

* Note: Need two base cases!
e Aside: Can show by induction that for n > 10: fib(n) > (1.5)"

e Thus the number of calls grows exponentially!
* Verifying our empirical observation that computing fib(45) was slow!

Mathematical Induction : Version 2

Principle of Mathematical Induction (Weak)

Let Py, P,, P,, ... be a sequence of statements, each
of which could be either true or false. Suppose that
|. Pyand P, are true, and

2. Foralln>2,ifP,, and P, are true, then so is P,..
Then all of the statements are true!
Other versions:
e Can have k > 2 base cases

e Doesn’t need to start at O

Example: Binary Search

* Given an array a[] of positive integers in increasing
order, and an integer X, find location of x in a[].

e Take “indexOf” approach: return -1 if x is not in a[]
protected static int recBinSrch(int a[], int wvalue,

int low, int high) {
if (low > high) return -1;

else {

int mid = (low + high) / 2; //mid index

if (a[mid] == value) return mid;

else if (a[mid] < value) //1look high!
return recBinSarch(a, value, mid + 1, high);

else //look low!
return recBinSarch(a, value, low, mid - 1);

}

Binary Search takes O(log n) Time

Can we use induction to prove this!?
* Induction on size of slice : n = high — low + |

e Claim: If n > 0, then recBinSrch performs at most c (|+ log n)
operations

* where c is twice the number of statements in recBinSrch
. All logs are base 2 unless specified differently
. Recall : log | =0

e Base case: n = |: Then low = high so only ¢ statements
execute (method runs twice) and ¢ < ¢(l+log 1) v/

e Assume that claim holds for some n 2 |, does it hold for n+1?
[Note: n+| > |, so low < high]

e Problem: Recursive call is not on n : it’s on n/2.

e Solution: We need a better version of the PMI....

Mathematical Induction

Principle of Mathematical Induction (Strong)

Let Py, P,, P,, ... be a sequence of statements, each of
which could be either true or false. Suppose that, for
some k>0

. Py, Py, ..., P, are true, and

2. Foreverynzxk, if Py, Py, ..., P, are true, then P, is true

Then all of the statements are true!

Binary Search takes O(log n) Time

Try again now:

e Assume that for some n 2 |, the claim holds for all
i < n, does claim hold for n+1?

e Yes! Either

e X = a[mid], so a constant number of operations are
performed, or

 RecBinSearch is called on a sub-array of size n/2, and by
induction, at most c(l + log (n/2)) operations are
performed.
e This gives a total of at most c + ¢(| + log(n/2)) operations

* We want to show that this is at most c(| + log(n))....

Binary Search takes O(log n) Time

. n :
This gives a total of at most ¢ + ¢ (1 + log, E) operations
e ¢ statements in original call to recBinSrch, and

n s o
° C (1 + log, E) statements in recursive calls

So

C+c(1+logzg) =c+c(log22+logzg)

=c+cC (logZZ %)

=c+clog, n

= c(1 + log, n)
which is what we wanted to show «/

In Summary

e Two versions of the principle of mathematical induction
e Strong: Given the truth of a fixed number of base cases P, ..., P,
if we can show that for every n > k:
e IfP, .., P, are true, then P, is true
Then all of the statements are true
* Weak: Given the truth of a fixed number of base cases P, ..., P,
if we can show that for every n > k:

* If the k statements P, P, .|y, .., P, are true, then P is true
Then all of the statements are true

e That is, if for every n > k we can show that whenever the k statements
immediately preceding statement P, are true, then P, is true

e Strong induction is needed when a problem is being
decomposed into subproblems much smaller size

