
CSCI 136
Data Structures &

Advanced Programming

Hashtables & Collisions



Video Outline

• Hashtables
• Recap “big picture”

• Collision resolution strategies
• External chaining
• Linear probing/open addressing



Hash Table Implementation

General idea: Use an array to represent “bins”
• V get(K key):
• use key’s hashcode to identify bin (% array length)
• Search bin for item with matching key

• V put(K key, V val):
• use key’s hashcode to identify bin
• Search bin for item with matching key:

• If a match exists, replace old value with val
• If no match exists, add new (key,value) pair



Navigating HashTable Collisions

• Problem: collisions occur when two unique items 
are mapped to the same bin
• This is a problem in arrays, because we can only 

store one item per index
• Thus, collision management isn’t just a performance 

issue, it is a correctness issue

• We’ll discuss two strategies to resolve collisions
• Linear probing (sometimes called open addressing)

• External chaining



Idea 1: External Chaining

• Idea: Instead of mapping individual items to 
bins, we store a list in each bin

data[  ][  ][  ][  ][  ][  ][  ][  ]

(K,V)

(K,V)

(K,V)

(K,V)

(K,V)

(K,V) (K,V)

(K,V)

(K,V)

(K,V)

• get(), put(), and remove(), then, need 
to (a) identify the bin, then (b) check bin’s list



Hash Table Implementation w/ 
External Chaining

public V get(K key) {
int bin = key.hashCode() % table.length;
// search for value in bin
Association<K, V> temp = new Association<K,V>(key);
Association<K, V> ret = table[bin].remove(temp);

if (ret != null) { // if found, return value
// restore value to bin so don't modify table
table[bin].add(ret);
// return the value we found 
return ret.getValue();

}
return null;

}



Hash Table Implementation w/ 
External Chaining

public V put(K key, V val) {
int bin = key.hashCode() % table.length;

// search for old value in bin and remove if found
Association<K, V> toAdd = new Association<>(key, val);
Association<K, V> old = table[bin].remove(toAdd);

// add our new K,V pair
table[bin].add(toAdd);

if (old != null) {
// if old value found, return val we’re replacing
return old.getValue();

}
// not found, return null
return null;

}



Downsides to External Chaining

• Each slot in our Hashtable’s array stores a list, 
even if the slot is empty
• This consumes extra space

• Potentially poor locality
• Not something we’ve talked about so far in this 

course, but a general rule of thumb: it is faster to
access things that are near to each other than it is 
to access things that are far away.
• Array elements are always contiguous (near)

• List elements may be scattered throughout mem (far)



Rethinking Collisions

• Let’s define an item’s canonical slot as the place 
where the item belongs ignoring collisions
• If no two items map to the same canonical slot, we don’t 

have any problems
• If multiple items do map to the same canonical slot, we 

need to figure out:
• Among the set of colliding items, which one belongs in the canonical slot
• Where do the “losing” items belong so that we still can find them in the 

future?



Linear Probing

• General idea: store each key-value pair in the first open slot 
on or after its canonical slot

• Insertion: If a collision occurs at a given bin, just scan forward 
(linearly) until an empty slot is available, and store it there
• We “wrap around” at the end of the array

• We will call a contiguous region of full bins a run

• Lookup: To find a KV-pair, scan linearly through the run until 
you find it or reach the end of the run

• Let’s take a first try at implementing put(key, val) and 
get(key)…



First Attempt: put(K)
public V put (K key, V value) {

int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null) { // Found and empty bin!

data[bin] = new Association<K,V>(key,value);
return null;

}
if (slot.getKey().equals(key)) { // already exists!

V old = slot.getValue();
slot.setValue(value);
return old;

}
// Bin filled. Check the next bin…
bin = (bin + 1) % data.length; 

}
}



First Attempt: get(K)

public V get (K key) {
int bin = key.hashCode() % data.length;
while (true) {

Association<K,V> slot = (Association<K,V>) data[bin];
if (slot == null) // Found an empty bin. End of the run

return null;

if (slot.getKey().equals(key))
return slot.getValue();

bin = (bin + 1) % data.length; 
}

}



Linear Probing Gotchas
• Let’s look at NaiveProbing.java

• We specify a dummy hash function: index of first letter of word

• Initial array size = 8
• Add “atlanta” to hash table

• Add “detroit”

• Add “queens”

• What happens when we remove “atlanta”, and then lookup 
“queens”?
• Our run was broken up!
• We need a “placeholder” for removed values to preserve runs…



Linear Probing Challenge

• When we delete an element from a run, we 
create a “hole”
• Challenge: How do we tell if the run has ended, 

or if the hole is from a deletion?
• Solution: Insert a “placeholder”

• If we see the placeholder during a lookup, we treat it as 
a collision, and keep scanning until we find a true hole

• If we see the placeholder during insertion, we treat it 
as an open spot

– (We must still scan the whole run to see if our key is present)



Hashtable.java

public class Hashtable<K,V> implements Map<K,V>, Iterable<V> {

/* A single key-value pair to be used as a token
* indicating a reserved location in the hashtable.
* Reserved locations are available for insertion,
* but cause collisions on lookup. */
protected static final String RESERVED = "RESERVED";

/* The data associated with the hashtable. */
protected Vector<HashAssociation<K,V>> data;



Hashtable.java
protected int locate(K key) {

// initial hash code
int hash = Math.abs(key.hashCode() % data.size());
// keep track of first unused slot, in case we need it
int reservedSlot = -1;
boolean foundReserved = false;
while (data.get(hash) != null) {

// loop until end of run OR find target key
if (data.get(hash).reserved()) {

// remember reserved slot if we fail to locate value
if (!foundReserved) {

reservedSlot = hash;
foundReserved = true;

} 
} else {

// value located? return the index in table
if (key.equals(data.get(hash).getKey())) return hash;

}
hash = (1+hash)%data.size(); 

} 
// return first empty slot we encountered
if (!foundReserved)

return hash;
else

return reservedSlot;
}



Hashtable.java

public V get(K key) {
// find bin where key lives (after resolving collisions)
int hash = locate(key);

// if the key is not found, the resulting location
// is either null or “RESERVED”
if (data.get(hash) == null || 

data.get(hash).reserved())
return null;

// key was found, so return associated value
return data.get(hash).getValue();

}



Hashtable.java
public V remove(K key) {

// find bin where key lives (after resolving collisions)
int hash = locate(key);

// if the key is not found, the resulting location
// is either null or “RESERVED”
if (data.get(hash) == null || 

data.get(hash).reserved())
return null;

// key was found, so remove, then return old value
count--;
V oldValue = data.get(hash).getValue();
data.get(hash).reserve();
return oldValue;

}



Linear Probing Observations

• Code becomes more complicated, but 
manageable

• The length of a run dictates the performance
• Reserving elements does not “shrink” the 

run–it defers the work to other operations
• Keeping our runs small is important, so we may 

want to reexamine design decisions if we expect a 
lot of deletions



Linear Probing Observations

• Downsides of linear probing?
• What if array is almost full?

• Loooong runs for every lookup…
• Items out of place if we don’t re-index after removing 

(placeholders are correct, but they defer work)

• Does external chaining avoid these problems?
• Recall, External chaining “groups” objects with the 

same hash value together in same bin in a 
Collection (usually a SLL)
• Only scan collisions, not an entire run
• Never scans more items than linear probing
• Worse cache behavior (locality)



Summary: Probing vs. Chaining
What is the performance of:
• put(K, V)

• LP: O(1 + run length)
• EC: O(1 + chain length)

• get(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• remove(K)
• LP: O(1 + run length)

• EC: O(1 + chain length)

• Parting Question: how do we control 
cluster/chain length?


