
CSCI 136
Data Structures &

Advanced Programming

Hashing Loose Ends

Video Outline

• Choosing an appropriate hashtable size
• Growing hashtables
• Ideal hash function properties and examples
• Revisiting hashtable performance

Hashtable Size

• Vectors are useful because, when a Vector
“runs out of space”, the Vector grows
• It’s very clear when we need to grow a vector:

excess capacity = 0

• What does it mean for a hashtable to “run out
of space”?

• Even ignoring correctness, performance is
slowed by “full” hashtables

Linear ProbingExternal Chaining

Hashtable Size

• The right size for our hashtable will make a
trade-off between space and performance
• We want our table size to be large to minimize

collisions (and run/chain lengths) : ↑ ↓
• We want our table size to be small to minimize

wasted space (empty slots): ↑ ↓
• In addition, we would like some flexibility in

case we make a bad initial guess for our size

Hashtable Fullness: Load Factor

• Suppose a hashtable with M slots stores N
elements

• Load factor is a measure of how full the hash
table is
• LF = (# elements) / (# slots) = N / M

• A smaller load factor means the hashtable is
less full, which likely gives better performance

Calculating Load Factor

• To track a hashtable’s load factor, we can
keep a running count of its elements
• Every successful remove() decrements the count
• Some put() operations increment the count

• Only increment when putting new keys: replacing the
value associated with an existing key doesn’t change the
hashtable’s count

• Load factor is then (count / table.length)

Using Load Factor

• Given a hashtable’s load factor, what should
we do?
• If the load factor is low, nothing!

• A low load factor should give good performance

• If the load factor is high (.6?) , grow our table
• Increase the number of slots without changing the

number of elements (LF = N / M)

• How to grow?
• Vectors: ensureCapacity()

• Allocate new Object array, then copy elements to
same index within new (larger) array

– Does this work for hashtables?

Doubling Array

• Cannot just copy values
• Why?

• Hash values may change

• Example: suppose (key.hashCode() == 11)
• 11 % 8 = 3;

• 11 % 16 = 11;

• Result: to grow our array, we must
recompute the hashcode for each item, then
reinsert each item into new array

Good Hashing Functions

• Important point:
• All of our performance hinges on using “good”

hash functions that spread keys “evenly”

• Good hash functions:
• Are fast to compute
• Uniformly distribute keys across the range

• General rules of thumb?
• Not really. We almost always have to test

“goodness” empirically.

Example Hash Functions

• What are some feasible hash functions for
Strings?
• Use the first char’s ASCII value?

• 0-255 only
• Not uniform (some letters more popular than others)

• Sum of all characters’ ASCII values?
• Not uniform - lots of small words

• Doesn’t give coverage over large array sizes
• Not good at avoiding collisions – e.g., smile, limes,

miles, and slime are all the same

Example Hash Functions

• Question: what does Java use?
• java.lang.String uses a weighted sum

• Small words get bigger codes
• Distributes keys better than non-weighted sum

• Let’s look at different weights…

s.charAt(i)S
n=s.length()

i = 0

Hash of all words in UNIX
spelling dictionary (997

buckets)

s.charAt(i) * 2iS
n

i = 0

s.charAt(i) * 256iS
This looks pretty good, but 256i is big…

n

i = 0

s.charAt(i) * 31iS
Java uses:n

i = 0

€

s.charAt(i) * 31(n− i−1)
i= 0

n

∑

Hashtables: O(1) operations?
• How long does it take to compute a String’s

hashCode?
• O(s.length())

• Given an object’s hash code, how long does it
take to find that object?
• O(run length) or O(chain length) PLUS cost of

.equals() method to compare keys

• Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(1)

put get space

unsorted vector O(n) O(n) O(n)

unsorted list O(n) O(n) O(n)

sorted vector O(n) O(log n) O(n)

balanced BST O(log n) O(log n) O(n)

hashtable O(1)* O(1)* O(n)*

Summary

