CSCI 136
Data Structures &
Advanced Programming

Hashing Loose Ends

Video Outline

Choosing an appropriate hashtable size
Growing hashtables
|deal hash function properties and examples

Revisiting hashtable performance

Hashtable Size

* Vectors are useful because, when a Vector
“runs out of space”, the Vector grows

* It’s very clear when we need to grow a vector:
excess capacity = 0

* What does it mean for a hashtable to “run out
of space™?

s N

External Chaining Linear Probing

* Even ignoring correctness, performance is
slowed by “full” hashtables

Hashtable Size

* The right size for our hashtable will make a
trade-off between space and performance

* We want our table size to be large to minimize
collisions (and run/chain lengths) : 1 |

* We want our table size to be small to minimize
wasted space (empty slots): T |

* In addition, we would like some flexibility in
case we make a bad initial guess for our size

Hashtable Fullness: Load Factor

e Suppose a hashtable with M slots stores N
elements

e |oad factor is a measure of how full the hash
table is

e LF = (# elements) / (#slots) =N /M

A smaller load factor means the hashtable is
less full, which likely gives better performance

Calculating Load Factor

e To track a hashtable’s load factor, we can
keep a running count of its elements
* Every successful remove () decrements the count

e Some put () operations increment the count

e Only increment when putting new keys: replacing the
value associated with an existing key doesn’t change the
hashtable’s count

e Load factor is then (count / table.length)

Using Load Factor

e Given a hashtable’s load factor, what should
we do!

* |f the load factor is low, nothing!
* A low load factor should give good performance

* |If the load factor is high (.6?) , grow our table

* Increase the number of slots without changing the
number of elements (LF = N / M)

* How to grow!

e Vectors: ensureCapacity()

* Allocate new Object array, then copy elements to
same index within new (larger) array

— Does this work for hashtables?

Doubling Array

e Cannot just copy values
 Why!?

* Hash values may change

* Example: suppose (key.hashCode() == 11)
e || %8=3;
e |1 % 16=11I;

* Result: to grow our array, we must
recompute the hashcode for each item, then
reinsert each item into new array

Good Hashing Functions

* Important point:

* All of our performance hinges on using “good”
hash functions that spread keys “evenly”

* Good hash functions:

* Are fast to compute

e Uniformly distribute keys across the range
e General rules of thumb!?

* Not really. We almost always have to test
“goodness” empirically.

Example Hash Functions

* What are some feasible hash functions for

S . 7 ASCII TABLE
trings!

o Use the first char’s ASCII value?
e 0-255 only

* Not uniform (some letters more popular than others)

;;;;;;

e Sum of all characters’ ASCII values?
* Not uniform - lots of small words
e Doesn’t give coverage over large array sizes

* Not good at avoiding collisions — e.g., smile, limes,
miles, and slime are all the same

Example Hash Functions

e Question: what does Java use?

e java.lang.String uses a weighted sum

e Small words get bigger codes
* Distributes keys better than non-weighted sum

e Let’s look at different weights...

Hash of all words in UNIX
spelling dictionary (997

“s.charAt(i)

s.len

n:

buckets)

=0

T L e TR T
© 070
© 00 % &%o%ﬁo@w 00 oo ane s

St © &% 0@@ 0% B o oS

o@oe&%ooooofoa o @B
o.&%h@ .
(3

o8 » oy o o D

o 3o® o 080

’£0&©£% i
® 000, OB 0O N

*8 oo o > Qe g i

o

° ‘mos g o

o apooRt, § 00 & PO P OOF

Po 00
OW%syv % 0000
TR R Rengye

o FETTT
%%
@@%

am’@o

90

Aduanbai g

500 600 700 800 900

Bucket

300 400

100 200

0

' s.charAt(i) * 2

90 —
30 -
70 + -
60 -

0 100 200 300 400 500 600 700 800 900
Bucket

' s.charAt(i) * 256

This looks pretty good, but 256' is big...

0
(e
T
1

(o))
o
T
1

Frequency

0 100 200 300 400 500 600 700 800 900
Bucket

Java uses:

' s.charAt(i) * 31 :

E s.charAt(7) * 31"

i=0

Frequency

0 100 200 300 400 500 600 700 800 900
Bucket

Hashtables: O(l) operations!?

* How long does it take to compute a String’s
hashCode?

e O(s.length())

* Given an object’s hash code, how long does it
take to find that object!?
* O(run length) or O(chain length) PLUS cost of
.equals() method to compare keys
e Conclusion: for a good hash function (fast,
uniformly distributed) and a low load factor
(short runs/chains), we say hashtables are O(I)

Summary

put get space
unsorted vector O(n) O(n) O(n)
unsorted list O(n) O(n) O(n)
sorted vector O(n) O(log n) O(n)
balanced BST O(log n) | O(log n) O(n)
hashtable O(1)* O(1)* O(n)*

