
Abstraction
CSCI 136 :: Williams College

This Video
• Abstraction

๏ What & why
• Exploring interfaces & abstract classes

๏ We’ve used them, but we haven’t dug into the details
• Look at the Structure5 Hierarchy

Abstraction is Beautiful
• Abstraction lets us solve complex problems elegantly by ignoring

the "irrelevant" details
๏ What does it mean to be irrelevant?
‣ As a systems researcher, I spend a lot of time on the “irrelevant details”,

but that is an even stronger argument in favor of abstraction…
๏ What does it mean for a problem to be complex?
‣ “Quick script” vs. a “program”

As humans, we simply can't reason about complex systems without
breaking the problem down into reasonably-sized, simplistic parts.

We Already Use Abstraction
• How have we seen abstraction so far in CS136?

๏ We started using Vector objects before we looked at how they
were implemented. How is that possible?
‣ We learned the function behaviors (inputs + outputs) before we learned

the data structure implementation (member variables, method code)
๏ We used public/private/protected to help us to hide

implementation details

We Already Use Abstraction
• We've also benefited from abstraction without explicitly saying so
• Vector extends and implements other Java classes/interfaces

structure5
Class Vector<E>

java.lang.Object
 structure5.AbstractStructure<E>
 structure5.AbstractList<E>
 structure5.Vector<E>
All Implemented Interfaces:
java.lang.Cloneable, java.lang.Iterable<E>, List<E>, Structure<E>

Java gives us two very powerful tools for abstraction:
 the Interface and the Abstract class

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/AbstractStructure.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/AbstractList.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Structure.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/AbstractStructure.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/AbstractList.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/Structure.html

Abstraction helps us to be Lazy
• We often optimize algorithm performance by minimizing big-O
• But once I heard how much some engineers get paid*, I started to

appreciate other optimization targets: saving programmer’s time

• Let's figure out how to save the programmer’s time in two ways:
๏ Code that uses data structures should be faster to write
๏ Code that implements data structures should be faster to write

Saving programmer effort:
Interfaces Define Behavior

• Consider the List interface:
๏ How many programs have we looked at that use classes that

implement the List interface?
๏ Do we care which class is used as long as it implements List?
‣ MAYBE!
‣ But we can write our code in ways that let us pick a specific class later

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html

An Interface defines a Contract
• If a class implements an interface, it must adhere to that contract

๏ This means the class must implement all methods in the interface
๏ But as a result, we can swap any class that implements the interface

into this sample code in place of SinglyLinkedList:

public static void main(String[] arguments)
 {
 List<String> argList = new SinglyLinkedList<String>();
 for (int i = 0; i < arguments.length; i++){
 if (!argList.contains(arguments[i])){
 argList.add(arguments[i]);
 }
 }
 System.out.println(argList);
 }

Takeaway: an interface defines behaviors, and that is all a
programmer needs to start writing functional code

http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html#contains(E)
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html#add(E)
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html#contains(E)
http://www.cs.williams.edu/~bailey/JavaStructures/doc/structure5/structure5/List.html#add(E)

Saving programmer effort:
Inheritance allows reuse

• Are there List methods that we can write without knowing the
low-level implementation details?
๏ Let's look at the AbstractList class
‣ Are there methods with real code?

- Yes
‣ Are all of the methods in the List interface present?

- No. Otherwise it wouldn't be abstract

Saving programmer effort:
Inheritance allows reuse

• A programmer can extend an (abstract) class and complete its
implementation
๏ This makes the class concrete.

• Lets look closely at the code for the SinglyLinkedList class
๏ It overrides some AbstractList methods with its own

implementations
๏ It entirely omits implementations for others

Takeaway: an abstract class defines behaviors AND it lets us
define general code. We can overwrite that code as needed.

One Last Note
• If an abstract class is like an interface but gives us the added

flexibility to provide code, why have interfaces at all?

A class can extend at most one class but implement any number
of interfaces.

Structure5 Hierarchy (So Far…)

List

AbstractList

Vector SinglyLinkedList DoublyLinkedList

Interface Abstract
Class

Concrete
ClassKey :

Review of Java Tools for
Abstraction

• public/private/protected
๏ Visibility modifiers let us “hide” a class’s low-level details
‣ Maintain control over variable access to prevent illegal program states
‣ A program that only uses public methods doesn’t need to change when

we change our class’s implementation

• Interfaces
๏ Define a ‘contract’ so we can write implementation-agnostic code

• Abstract Classes
๏ Specify behavior & let us provide partial implementation

